39 resultados para insulin resistance


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Study objective: Low birth weight predicts cardiovascular disease in adulthood, and one possible explanation is that children with lower birth weight consume more fat than those born heavier. Therefore, the objective of this study was to investigate associations between birth weight and childhood diet, and in particular, to test the hypothesis that birth weight is inversely related to total and saturated fat intake. Design: Prospective cohort study. Setting: South west England. Participants: A subgroup of children enrolled in the Avon longitudinal study of parents and children, with data on birth weight and also diet at ages 8, 18, 43 months, and 7 years ( 1152, 998, 848, and 771 children respectively). Main results: Associations between birth weight and diet increased in strength from age 8 to 43 months, but had diminished by age 7 years. Fat, saturated fat, and protein intakes were inversely, and carbohydrate intake was positively associated with birth weight at 43 months of age, after adjusting for age, sex, and energy intake. After adjustment for other confounders, all associations were weakened, although there was still a suggestion of a relation with saturated fat ( -0.48 (95% CI -0.97, 0.02) g/day per 500 g increase in birth weight. Similar patterns were seen in boys and girls separately, and when the sample was restricted to those with complete data at all ages. Conclusions: A small inverse association was found between birth weight and saturated fat intake in children at 43 months of age but this was not present at 7 years of age. This study therefore provides little evidence that birth weight modifies subsequent childhood diet.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the 60 years since C H Li reported the isolation of bovine growth hormone (GH), endocrinologists have seen the widespread use of human GH for statural disorders, the measurement of plasma GH as a diagnostic test, the full development of the somatomedin hypothesis and the molecular details of the function of the GH receptor responsible for regulating somatic growth and metabolism. In diabetes, we have passed from administration of animal insulin to formulations with different release rates, insulin pumps and inhalers, insulin sensitizers and a greater understanding of insulin signalling and insulin resistance through genetically engineered murine models. What might we expect over the next few decades?

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glucose concentration during cumulus-oocyte complex (COC) maturation influences several functions, including progression of oocyte meiosis, oocyte developmental competence, and cumulus mucification. Glucosamine (GlcN) is an alternative hexose substrate, specifically metabolized through the hexosamine biosynthesis pathway, which provides the intermediates for extracellular matrix formation during cumulus cell mucification. The aim of this study was to determine the influence of GlcN on meiotic progression and oocyte developmental competence following in vitro maturation (IVM). The presence of GlcN during bovine IVM did not affect the completion of nuclear maturation and early cleavage, but severely perturbed blastocyst development. This effect was subsequently shown to be dose-dependent and was also observed for porcine oocytes matured in vitro. Hexosamine biosynthesis upregulation using GlcN supplementation is well known to increase O-linked glycosylation of many intracellular signaling molecules, the best-characterized being the phosphoinositol-3-kinase (PI3K) signaling pathway. We observed extensive O-linked glycosylation in bovine cumulus cells, but not oocytes, following IVM in either the presence or the absence of GlcN. Inhibition of O-linked glycosylation significantly reversed the effect of GlcN-induced reduction in developmental competence, but inhibition of PI3K signaling had no effect. Our data are the first to link hexosamine biosynthesis, involved in cumulus cell mucification, to oocyte developmental competence during in vitro maturation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Orphan nuclear receptors: therapeutic opportunities in skeletal muscle. Am J Physiol Cell Physiol 291: C203-C217, 2006; doi: 10.1152/ajpcell. 00476.2005.-Nuclear hormone receptors (NRs) are ligand-dependent transcription factors that bind DNA and translate physiological signals into gene regulation. The therapeutic utility of NRs is underscored by the diversity of drugs created to manage dysfunctional hormone signaling in the context of reproductive biology, inflammation, dermatology, cancer, and metabolic disease. For example, drugs that target nuclear receptors generate over $10 billion in annual sales. Almost two decades ago, gene products were identified that belonged to the NR superfamily on the basis of DNA and protein sequence identity. However, the endogenous and synthetic small molecules that modulate their action were not known, and they were denoted orphan NRs. Many of the remaining orphan NRs are highly enriched in energy-demanding major mass tissues, including skeletal muscle, brown and white adipose, brain, liver, and kidney. This review focuses on recently adopted and orphan NR function in skeletal muscle, a tissue that accounts for similar to 35% of the total body mass and energy expenditure, and is a major site of fatty acid and glucose utilization. Moreover, this lean tissue is involved in cholesterol efflux and secretes that control energy expenditure and adiposity. Consequently, muscle has a significant role in insulin sensitivity, the blood lipid profile, and energy balance. Accordingly, skeletal muscle plays a considerable role in the progression of dyslipidemia, diabetes, and obesity. These are risk factors for cardiovascular disease, which is the the foremost cause of global mortality (> 16.7 million deaths in 2003). Therefore, it is not surprising that orphan NRs and skeletal muscle are emerging as therapeutic candidates in the battle against dyslipidemia, diabetes, obesity, and cardiovascular disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

beta-Adrenergic receptor (beta-AR) agonists induce Nur77 mRNA expression in the C2C12 skeletal muscle cell culture model and elicit skeletal muscle hypertrophy. We previously demonstrated that Nur77 (NR4A1) is involved in lipolysis and gene expression associated with the regulation of lipid homeostasis. Subsequently it was demonstrated by another group that beta-AR agonists and cold exposure-induced Nur77 expression in brown adipocytes and brown adipose tissue, respectively. Moreover, NOR-1 (NR4A3) was hyperinduced by cold exposure in the nur77(-/-) animal model. These studies underscored the importance of understanding the role of NOR-1 in skeletal muscle. In this context we observed 30-480 min of beta-AR agonist treatment significantly and transiently increased expression of the orphan nuclear receptor NOR-1 in both mouse skeletal muscle tissue (plantaris) and C2C12 skeletal muscle cells. Specific beta(2)-and beta(3)-AR agonists had similar effects as the pan-agonist and were blocked by the beta-AR antagonist propranolol. Moreover, in agreement with these observations, isoprenaline also significantly increased the activity of the NOR-1 promoter. Stable exogenous expression of a NOR-1 small interfering RNA (but not the negative control small interfering RNA) in skeletal muscle cells significantly repressed endogenous NOR-1 mRNA expression and led to changes in the expression of genes involved in the control of lipid use and muscle mass underscored by a dramatic increase in myostatin mRNA expression. Concordantly the myostatin promoter was repressed by NOR-1 expression. In conclusion, NOR-1 is highly responsive to beta-adrenergic signaling and regulates the expression of genes controlling fatty acid use and muscle mass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Plasma triglyceride concentration is known to be a significant risk factor for cardiovascular disease (CVD). Previous studies have found that the level of triglycerides is strongly influenced by genetic factors. Methods: To identify quantitative trait loci influencing triglycerides, we conducted a genome-wide linkage scan on data from 485 Australian adult dizygotic twin pairs. Prior to linkage analysis, triglyceride values were adjusted for the effects of covariates including age, sex, time since last meal, time of blood collection (CT) and time to plasma separation. Results: The heritability estimate for ln(triglyceride) adjusted for all above fixed effects was 0.49. The highest multipoint LOD score observed was 2.94 (genome-wide p=0.049) on chromosome 7 (at 65cM). This 7p region contains several candidate genes. Two other regions with suggestive multipoint LOD scores were also identified on chromosome 4 (LOD score=2.26 at 62cM) and chromosome X (LOD score=2.01 at 81cM). Conclusions: The linkage peaks found represent newly identified regions for more detailed study, in particular the significant linkage observed on chromosome 7p13. \ (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVES The purpose of this research was to identify the determinants of right ventricular (RV) dysfunction in overweight and obese subjects. BACKGROUND Right ventricular dysfunction in obese subjects is usually ascribed to comorbid diseases, especially obstructive sleep apnea. We used tissue Doppler imaging to identify the determinants of RV dysfunction in overweight and obese subjects. METHODS Standard and tissue Doppler echocardiography was performed in 112 overweight (body mass index [BMI] 25 to 29.9 kg/m(2)) or obese (BMI >30 kg/m(1)) subjects and 36 referents (BMI 35 kg/m(2) had reduced RV function compared with referent subjects, evidenced by reduced s(m) (6.5 +/- 2.4 cm/s vs. 10.2 +/- 1.5 cm/s, p < 0.001), peak strain (-21 +/- 4% vs. -28 +/- 4%, p < 0.001), peak strain rate (-1.4 +/- 0.4 s(-1) vs. -2.0 +/- 0.5 s(-1), p < 0.001), and e(m) (6.8 +/- 2.4 cm/s vs. -10.3 +/- 2.5 cm/s, p < 0.001), irrespective of the presence of sleep apnea. Similar but lesser degrees of reduced systolic function (p < 0.05) were present in overweight (BMI 25 to 29.9 kg/m(2)) and mildly obese (BMI 30 to 35 kg/m(2)) groups. Differences in RV e(m), s(m), and strain indexes were demonstrated between the severely versus overweight and mildly obese groups (p < 0.05). Body mass index remained independently related to RV changes after adjusting for age, log insulin, and mean arterial pressures. In obese patients, these changes were associated with reduced exercise capacity but not the duration of obesity and presence of sleep apnea or its severity. CONCLUSIONS Increasing BMI is associated with increasing severity of RV dysfunction in overweight and obese subjects without overt heart disease, independent of sleep apnea.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Interferon alpha (IFN-alpha) activated cellular signalling is negatively regulated by inhibitory factors, including the suppressor of cytokine signalling (SOCS) family. The effects of host factors such as obesity on hepatic expression of these inhibitory factors in subjects with chronic hepatitis C virus (HCV) are unknown. Objectives: To assess the independent effects of obesity, insulin resistance, and steatosis on response to IFN-alpha therapy and to determine hepatic expression of factors inhibiting IFN-alpha signalling in obese and nonobese subjects with chronic HCV. Methods: A total of 145 subjects were analysed to determine host factors associated with non-response to antiviral therapy. Treatment comprised IFN-alpha or peginterferon alpha, either alone or in combination with ribavirin. In a separate cohort of 73 patients, real time-polymerase chain reaction was performed to analyse hepatic mRNA expression. Immunohistochemistry for SOCS-3 was performed on liver biopsy samples from 38 patients with viral genotype 1 who had received antiviral treatment. Results: Non-response (NR) to treatment occurred in 55% of patients with HCV genotypes 1 or 4 and 22% with genotypes 2 or 3. Factors independently associated with NR were viral genotype 1/4 (p < 0.001), cirrhosis on pretreatment biopsy (p = 0.025), and body mass index >= 30 kg/m(2) (p = 0.010). Obese subjects with viral genotype 1 had increased hepatic mRNA expression of phosphoenolpyruvate carboxy kinase (p = 0.01) and SOCS-3 (p = 0.047), in comparison with lean subjects. Following multivariate analysis, SOCS-3 mRNA expression remained independently associated with obesity (p = 0.023). SOCS-3 immunoreactivity was significantly increased in obesity (p = 0.013) and in non-responders compared with responders (p = 0.014). Conclusions: In patients with chronic HCV viral genotype 1, increased expression of factors that inhibit interferon signalling may be one mechanism by which obesity reduces the biological response to IFN-alpha.