18 resultados para Tissue culture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stem cells, either from embryonic or adult sources, have demonstrated the potential to differentiate into a wide range of tissues depending on culture conditions. This makes them prime candidates for use in tissue engineering applications. Current technology allows us to process biocompatible and biodegradable polymers into three-dimensional (3D) configurations, either as solid porous scaffolds or hydrogels, with controlled macro and/or micro spatial geometry and surface chemistry. Such control provides us with the ability to present highly controlled microenvironments to a chosen cell type. However, the precise microenvironments required for optimal expansion and/or differentiation of stem cells are only now being elucidated, and hence the controlled use of stem cells in tissue engineering remains a very young field. We present here a brief review of the current literature detailing interactions between stem cells and 3D scaffolds of varying morphology and chemical properties, concluding with remaining challenges for those interested in tissue engineering using tailored scaffolds and stem cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shiga toxigenic Escherichia coli (STEC) serotypes are important foodborne pathogens that cause gastrointestinal disease worldwide. An understanding of how STEC strains attach to surfaces may provide insight into the potential persistence of and contamination with STEC in food environments. The initial attachment of a selection of STEC serotypes to beef muscle and adipose tissue was evaluated for isolates grown in planktonic and sessile culture. Initial experiments were performed to determine whether attachment differed among STEC strains and between the two modes of growth. Viable counts were obtained for loosely and strongly attached cells, and the strength of attachment (S-r) was calculated. All bacterial isolates grown in sessile culture attached in higher numbers to muscle and adipose tissue than did bacteria in planktonic cultures. For all attachment assays performed, mean concentrations for loosely attached cells were consistently higher than concentrations for strongly attached cells. The mean concentrations for strongly attached bacteria for planktonic and sessile cultures were significantly higher (P < 0.05) on adipose than on muscle tissue. However, some strains of STEC, particularly those from sessile culture, did not differ in their attachment to muscle or adipose tissue. S-r values were not significantly different (P > 0.05) among STEC isolates for all assays. No correlation was found between bacterial hydrophobicity and surface charge values (previously determined) and production of surface structures, viable counts, and S-r values. STEC grown in planktonic and sessile culture seems to behave differently with respect to attachment to muscle and adipose tissue. Cells in sessile culture may have a greater potential to strongly attach to meat surfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Australia, metal-contaminated sites, including those with elevated levels of copper (Cu), are frequently revegetated with endemic plants. Little is known about the responses of Australian plants to excess Cu. Acacia holosericea, Eucalyptus crebra, Eucalyptus camaldulensis, and Melaleuca leucadendra were grown in solution culture with six Cu treatments (0.1 to 40 mu M). While A. holosericea was the most tolerant to excess Cu, all of the species tested were sensitive to excess Cu when compared with exotic tree and agricultural species. The critical external concentrations for toxicity were < 0.7 mu M for all species tested. There was little differentiation between shoot-tissue Cu concentrations in normal versus treated plants, thus, the derivation of critical shoot concentrations was possible only for the most tolerant species, A. holosericea. Critical root Cu concentrations were approximately 210 mu g g(-1) (A. holosericea), 150 mu g g(-1) (E. crebra), 25 mu g g(-1) (E. camaldulensis), and 165 mu g g(-1) (M. leucadendra). These results provide the first comprehensive combination of growth responses, critical concentrations, and toxicity symptoms for three important Australian genera for use in the management of Cu-contaminated sites.