26 resultados para Drug delivery systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review with 93 references. Heparins are high molecular weight, hydrophilic polyanions, which are unstable under acidic conditions; and therefore they exhibit poor oral bioavailability. Consequently they must be administered via the parenteral route which is expensive, inconvenient, and limits use by outpatients. The development of an oral form of heparin is warranted. This review examined the literature, mostly published between January 2000 and January 2005, pertaining to the gastrointestinal absorption of heparin by lipidization or coadministration with penetration enhancers. A lipidization strategy that was examined involved conjugation of low molecular weight heparin with deoxycholic acid. The majority of studies examined the ability of different formulations, typically utilizing penetration enhancers, to improve heparin bioavailability. The penetration enhancers used included fatty acids, Labrasol™, Gelucire 44/14™, polycationic lipophilic-core dendrons, saponins, mono-N-carboxymethyl chitosan, Carbopol® 934P, a combination of thiolated polycarbophil and glutathione, polymeric nanoparticles, polymeric microparticles, sodium N-[8-(2-hydroxybenzoyl) amino]caprylate (SNAC), and sodium N-[10-(2-hydroxybenzoyl)amino]decanoate (SNAD). The variety of models used and doses of heparin/penetration enhancers applied, however, made it difficult to compare the results between studies. Nevertheless, all of the reviewed drug delivery systems showed therapeutic value and confirmation of the promising results obtained from animal studies, by progression to clinical trials, is necessary. Overall, progress has been made in the quest for an oral heparin formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in molecular biology have given us a wide range of protein and peptide-based drugs that are unsuitable for oral delivery because of their high degree of first-pass metabolism. Though parenteral delivery is the obvious answer, for the successful development of commercial chronic and self-administration usage formulations it is not the ideal choice. Transdermal delivery is emerging as the biggest application target for these agents, however, the skin is extremely efficient at keeping out such large molecular weight compounds and therapeutic levels are never going to be realistically achieved by passive absorption. Physical enhancement mechanisms including: iontophoresis, electroporation, ultrasound, photomechanical waves, microneedles and jet-propelled particles are emerging as solutions to this topical delivery dilemma. Adding proteins and peptides to the list of other large molecular weight drugs with insufficient passive transdermal fluxes to be therapeutically useful, we have a collection of pharmacological agents waiting for efficient delivery methods to be introduced. This article reviews the current state of physical transdermal delivery technology, assesses the pros and cons of each technique and summarises the evidence-base of their drug delivery capabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particulate adjuvant systems are largely classified according to their functional characteristics, such as the nature of the typical immune response they induce, or their perceived mode of action. From a formulation science perspective, it is practical to classify antigen delivery systems according to the physical nature of the formulations. This article discusses lipid based particulate systems, grouped according to the nature of their predominant lipid constituent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-in-oil microemulsions (w/o ME) capable of undergoing a phase-transition to lamellar liquid crystals (LC) or bicontinuous ME upon aqueous dilution were formulated using Crodarnol EO, Crill 1 and Crillet 4, an alkanol or alkanediol as cosurfactant and water. The hypothesis that phase-transition of ME to LC may be induced by tears and serve to prolong precomeal retention was tested. The ocular irritation potential of components and formulations was assessed using a modified hen's egg chorioallantoic membrane test (HET-CAM) and the preocular retention of selected formulations was investigated in rabbit eye using gamma scintigraphy. Results showed that Crill 1, Crillet 4 and Crodamol EO were non-irritant. However, all other cosurfactants investigated were irritant and their irritation was dependent on their carbon chain length. A w/o ME formulated without cosurfactant showed a protective effect when a strong irritant (0.1 M NaOH) was used as the aqueous phase. Precorneal clearance studies revealed that the retention of colloidal and coarse dispersed systems was significantly greater than an aqueous solution with no significant difference between ME systems (containing 5% and 10% water) as well as o/w emulsion containing 85% water. Conversely, a LC system formulated without cosurfactant displayed a significantly greater retention compared to other formulations. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipoamino acids (LAAs) are promoieties able to enhance the amphiphilicity of drugs, facilitating their interaction with cell membranes. Experimental and computational studies were carried out on two series of lipophilic amide conjugates between a model drug (tranylcypromine, TCP) and LAA or alkanoic acids containing a short, medium or long alkyl side chain (C-4 to C-16). The effects of these compounds were evaluated by monolayer surface tension analysis and differential scanning calorimetry using dimyristoylphosphatidylcholine nnonolayers and liposomes as biomembrane models. The experimental results were related to independent calculations to determine partition coefficient and blood-brain partitioning. The comparison of TCP-LAA conjugates with the related series of TCP alkanoyl amides confirmed that the ability to interact with the biomembrane models is not due to the mere increase of lipophilicity, but mainly to the amphipatic nature and the kind of LAA residue. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular delivery involving the transfer of various drugs and bio-active molecules (peptides, proteins and DNAs, etc.) through the cell membrane into cells has attracted increasing attention because of its importance in medicine and drug delivery. This topic has been extensively reviewed. The direct delivery of drugs and biomolecules, however, is generally inefficient and suffering from problems such as enzymic degradation of DNAs. Therefore, searching for efficient and safe transport vehicles (carriers) to delivery genes or drugs into cells has been challenging yet exciting area of research. In past decades, many carriers have been developed and investigated extensively which can be generally classified into four major groups: viral carriers, organic cationic compounds, recombinant protiens and inorganic nanoparticles. Many inorganic materials, such as calcium phosphate, gold, carbon materials, silicon oxide, iron oxide and layered double hydroxide (LDH), have been studied. Inorganic nanoparticles show low toxicity and promise for controlled delivery properties, thus presenting a new alternative to viral carriers and cationic carriers. Inorganic nanoparticles generally possess versatile properties suitable for cellular delivery, including wide availability, rich functionality, good biocompatibility, potential capability of targeted delivery (e.g. selectively destroying cancer cells but sparing normal tissues) and controlled release of carried drugs. This paper reviews the latest advances in inorganic nanoparticle applications as cellular delivery carriers and highlights some key issues in efficient cellular delivery using inorganic nanoparticles. Critical proper-ties of inorganic nanoparticles, surface functionalisation (modification), uptake of biomolecules, the driving forces for delivery, and release of biomolecules will be reviewed systematically. Selected examples of promising inorganic nanoparticle delivery systems, including gold, fullerences and carbon nanotubes, LDH and various oxide nanoparticles in particular their applications for gene delivery will be discussed. The fundamental understanding of properties of inorganic nanoparticles in relation to cellular delivery efficiency as the most paramount issue will be highlighted. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There is an urgent need to treat restenosis, a major complication of the treatment of arteries blocked by atherosclerotic plaque, using local delivery techniques. We observed that cross-linked fibrin (XLF) is deposited at the site of surgical injury of arteries. An antibody to XLF, conjugated to anti-restenotic agents, should deliver the drugs directly and only to the site of injury. An anti-XLF antibody (H93.7C.1D2/48; 1D2) was conjugated to heparin (using N-succinimidyl 3-(2-pyridyldithio)-propionate), low molecular weight heparin (LMWH) (adipic acid dihydrazide) and rapamycin (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide), and the conjugates purified and tested for activity before use in vivo. Rabbits had their right carotid arteries de-endothelialised and then given a bolus of 1D2-heparin, 1D2-LMWH or 1D2-rapamycin conjugate or controls of saline, heparin, LMWH, rapamycin or 1D2 (+/-heparin bolus) and sacrificed after 2 or 4 weeks (12 groups, n=6/group). Rabbits given any of the conjugates had minimal neointimal development in injured arteries, with up to 59% fewer neointimal cells than those given control drugs. Rabbits given 1D2-heparin or 1D2-LMWH had an increased or insignificant reduction in luminal area, with positive remodelling, while the medial and total arterial areas of rabbits given 1D2-rapamycin were not affected by injury. Arteries exposed to 1D2-heparin or 1D2-rapamycin had more endothelial cells than rabbits given control drugs. Thus, XLF-antibodies can site-deliver anti-restenotic agents to injured areas of the artery wall, where the conjugates can influence remodelling, re-endothelialisation and neointimal cell density, with reduced neointimal formation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study investigates a stent-less local delivery system for anti-restenotic agents utilizing antibodies to cross-linked fibrin (XLF). Heparin and low molecular weight heparin (LMWH) were conjugated to an antibody to cross-linked fibrin D-dinner (1D2). Rabbit right carotid arteries were injured with a balloon catheter, then the animals were given a bolus injection of 40 mug/k,g 1D2-heparin (26-70 mug/kg heparin) or 1D2-LMWH (29-80 mug/kg LMWH) conjugates or controls of saline (0.5 ml/kg), heparin (150 U/kg), LMWH (2 mg), or 1D2 (40 mug/kg), with or without a heparin bolus and sacrificed after 2 weeks (8 groups, n = 6/group). The injured artery of rabbits given 1D2-heparin or 1D2-LMWH conjugates had reduced neointimal development, with decreased luminal narrowing and positive remodelling compared with animals given control drugs. Animals given 1D2-heparin conjugate (with a heparin bolus) had three to five times more endothelial cells than the rabbits given saline or unconjugated heparin, while rabbits given 1D2-LMWH conjugate had up to 59% fewer neointimal cells than those given unconjugated drugs. There was little difference in extracellular matrix organization or composition. Thus cross-linked fibrin-antibodies can site-deliver anti-restenotic agents to injured areas of the artery wall where they influence wall remodelling and endothelial and neointimal cell number, reducing neointimal formation without systemic complications. Local delivery of anti-restenotic agents should minimise systemic effects, bleeding complications and potentially the cost of treatment due to a single, lower dose. (C) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A phase diagram of the pseudoternary system ethyloleate, polyoxyethylene 20 sorbitan mono-oleate/sorbitan monolaurate and water with butanol as a cosurfactant was prepared. Areas containing optically isotropic, low viscosity one-phase systems were identified and systems therein designated as w/o droplet-, bicontinuous- or solution-type microemulsions using conductivity, viscosity, cryo-field emission scanning electron microscopy and self-diffusion NMR. Nanoparticles were prepared by interfacial polymerization of selected w/o droplet, bicontinuous- or solution-type microemulsions with ethyl-2-cyanoacrylate. Morphology of the particles and entrapment of the water-soluble model protein ovalbumin were investigated. Addition of monomer to the different types of microemulsions (w/o droplet, bicontinuous, solution) led to the formation of nanoparticles, which were similar in size (similar to 250 nm), polydispersity index (similar to 0.13), zeta-potential (similar to-17 mV) and morphology. The entrapment of the protein within these particles was up to 95%, depending on the amount of monomer used for polymerization and the type of microemulsion used as a polymerization template. The formation of particles with similar characteristics from templates having different microstructure is surprising, particularly considering that polymerization is expected to occur at the water-oil interface by base-catalysed polymerization. Dynamics within the template (stirring, viscosity) or indeed interfacial phenomena relating to the solid-liquid interface appear to be more important for the determination of nanoparticle morphology and characteristics than the microstructure of the template system. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Periodic mesoporous organosilica (PMO) hollow spheres with tunable wall thickness have been successfully synthesized by a new vesicle and a liquid crystal “dual templating” mechanism, which may be applicable for drug and DNA delivery systems, biomolecular encapsulation, as well as nanoreactors for conducting biological reactions at the molecular levels.