2 resultados para hierarchical model

em SAPIENTIA - Universidade do Algarve - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high level of unemployment is one of the major problems in most European countries nowadays. Hence, the demand for small area labor market statistics has rapidly increased over the past few years. The Labour Force Survey (LFS) conducted by the Portuguese Statistical Office is the main source of official statistics on the labour market at the macro level (e.g. NUTS2 and national level). However, the LFS was not designed to produce reliable statistics at the micro level (e.g. NUTS3, municipalities or further disaggregate level) due to small sample sizes. Consequently, traditional design-based estimators are not appropriate. A solution to this problem is to consider model-based estimators that "borrow information" from related areas or past samples by using auxiliary information. This paper reviews, under the model-based approach, Best Linear Unbiased Predictors and an estimator based on the posterior predictive distribution of a Hierarchical Bayesian model. The goal of this paper is to analyze the possibility to produce accurate unemployment rate statistics at micro level from the Portuguese LFS using these kinds of stimators. This paper discusses the advantages of using each approach and the viability of its implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A biological disparity energy model can estimate local depth information by using a population of V1 complex cells. Instead of applying an analytical model which explicitly involves cell parameters like spatial frequency, orientation, binocular phase and position difference, we developed a model which only involves the cells’ responses, such that disparity can be extracted from a population code, using only a set of previously trained cells with random-dot stereograms of uniform disparity. Despite good results in smooth regions, the model needs complementary processing, notably at depth transitions. We therefore introduce a new model to extract disparity at keypoints such as edge junctions, line endings and points with large curvature. Responses of end-stopped cells serve to detect keypoints, and those of simple cells are used to detect orientations of their underlying line and edge structures. Annotated keypoints are then used in the leftright matching process, with a hierarchical, multi-scale tree structure and a saliency map to segregate disparity. By combining both models we can (re)define depth transitions and regions where the disparity energy model is less accurate.