14 resultados para ANCA

em Research Open Access Repository of the University of East London.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the experimental work carried out on a full scale concrete frame strengthened with Fibre Reinforced Polymer (FRP) composites. The frame was damaged, strengthened with FRP reinforcement and re-tested to assess the effectiveness of the strengthening technique. The natural frequencies of vibration, displacements, velocities and accelerations for both the unstrengthened and strengthened frame were recorded and compared.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an experimental investigation carried out on concrete cylinders confined with fibre reinforced polymers (FRP), subjected to monotonic and cyclic loading. Carbon fibres (CFRP) were used as confining material for the concrete specimens. The failure mode, reinforcement ratio based on jacket thickness and type of loading are examined. The study shows that external confinement of concrete can enhance its strength and ductility as well as result in large energy absorption capacity. This has important safety implications, especially in regions with seismic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents an experimental investigation carried out on concrete filled fibre reinforced polymers (FRP) tubes, subjected to monotonic and cyclic loading. Two types of FRP materials were used: glass fibres and carbon fibres. Different failure modes and the effect of concrete fill, type of confinement materials, reinforcement ratio based on tube thickness and type of loading are examined. The study shows that external confinement of concrete by means of modern materials, such fibre reinforced polymers, can enhance its strength and ductility as well as result in large energy absorption capacity. This has important safety implications, especially in regions with seismic activity. A model that predicts the behaviour of confined concrete which takes into account the stiffness and effectiveness of different confinement materials is briefly introduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A range of instruments are available to measure thermal conductivity of building materials. Some of these tools are heat-flow meter, hot plate, hot box and heat transfer analyzer. Thermal conductivity data derived by using different instruments can be different from each other. Implication of these variations in thermal conductivity is significant in terms of commercial profile of the insulations and also in terms of calculating energy saving in large scale use of that specific insulation. Thus it is important to know which of the measuring instrument for thermal conductivity can produce relatively accurate and representative result. This paper firstly looks at the methods and instrument for measuring thermal conductivity of building materials and secondly compares and analyses the results of testing thermal conductivity of fibrous insulations using a heat analyzer and a hot plate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper discusses the sustainable performance of geosynthetic clay liners (GCLs) which are popularly specified as “leachate retaining” or as “water proofing” membranes in the geo-environmental construction industry. Geosynthetic clay liners (GCLs) are composite matting comprising of bentonite clay with two covering geosynthetics. These are innovative labour saving construction material, developed over the last three decades. The paper outlines the variety of Geosynthetic Clay Liners (GCLs) can be classified essentially into two distinctly different forms viz; (a) air dry (< 8% m/c) with granular or powdered bentonite or (b) bentonite cake factory prehydrated to a moisture content (~40% m/c) beyond its shrinkage limit and vacuum extruded as a clay cake to enhance its sustainable performance. The dominant mineral in bentonite clay is the three-layered (2:1) clay mineral montmorillonite. High quality bentonites need to be used in the GCL manufacture. Sodium montmorillonite has the desired characteristic of high swelling capacity, high cation exchange capacity and the consequently very low hydraulic conductivity, providing the basis for the hydraulic sealing medium in GCLs. These encapsulate the active montmorillonite clay minerals which depend on the water and chemical balance between the sealing element and the surrounding geo environment. Quantitative mineralogical analyses and an assessment of the adsorbed cation regime, diffusion coefficients and clay leachate compatibility must necessarily be an integral part of the site appraisal to ensure acceptable long term sustainability and performance. Factors influencing the desired performance of bentonite in the GCLs placed in difficult construction and hostile chemical environments are discussed in this paper. Accordingly, the performance specifications for GCLs are identified and the appropriateness of enhancing the cation exchange capacity with polymer treatment and the need for factory prehydration of the untreated sodium bentonite is emphasised. The advantage of factory prehydrating the polymer treated bentonite to fluid content beyond its shrinkage limit and subsequently factory processing it to develop laminated clay is to develop a GCL that has enviable sealing characteristics with a greater resistance to geochemical attack and cracking. Since clay liners are buried in the ground as base liners, capping layer or as structural water proofing membrane, they can easily avoid strict quality and performance monitoring being “out of sight, out of mind!”. It is very necessary that barrier design for leachate containment must necessarily be in accordance with legislative requirement Assessment of long term hydraulic conductivities and clay-leachate compatibility assessment is deemed necessary. The derogatory factors affecting the sustainable performance of the bentonite in GCLs placed in difficult construction and hostile chemical environments are discussed. Sustainability concepts incorporated in waste management practice must aim to achieve 100% recycling and fully implement the handling of solid waste in developing countries with relatively lower labour costs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An in situ experiment on a full-scale timber frame test building was carried out to study the hygrothermal performance of wood-hemp composite insulation in timber frame wall panels with and without a vapour barrier. The heat transfer properties and the likelihood of mould growth and condensation in the panels were compared. Step changes in the internal relative humidity were performed to explore the effects of high, normal and low internal moisture loads on the wall panels. No significant difference in the average equivalent thermal transmittance (U-values) between the panels with and without a vapour barrier was observed. The average equivalent U-values of the panels were close to the U-values calculated from the manufacturers’ declared thermal conductivity values of the insulation. The likelihood of condensation was higher at the interface of the wood-hemp insulation and the oriented strand board (OSB) in the panel without a vapour barrier. In terms of the parametric assessment of the mould germination potential, the relative humidity, the temperature and the exposure conditions in the insulation-OSB interfaces of the panel without a vapour barrier were found to be more favourable to the germination of mould spores. Nonetheless, when the insulations were dismantled, no mould was visually detected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cities dominated by impervious artificial surfaces can experience myriad negative environmental impacts. Restoration of green infrastructure has been identified as a mechanism for increasing urban resilience, enabling cities to transition towards sustainable futures in the face of climate-driven change. Building rooftops represent a viable space for integrating new green infrastructure into high density urban areas. Urban rooftops also provide prime locations for photovoltaic (PV) systems. There is increasing recognition that these two technologies can be combined to deliver reciprocal benefits in terms of energy efficiency and biodiversity targets. Scarcity of scientific evaluation of the interaction between PVs and green roofs means that the potential benefits are currently poorly understood. This study documents evidence from a biodiversity monitoring study of a substantial biosolar roof installed in the Queen Elizabeth Olympic Park. Vegetation and invertebrate communities were sampled and habitat structure measured in relation to habitat niches on the roof, including PV panels. Ninety-two plant species were recorded on the roof and variation in vegetation structure associated with proximity to PV panels was identified. Almost 50% of target invertebrate species collected were designated of conservation importance. Arthropod distribution varied in relation to habitat niches on the roof. The overall aim of the MPC green roof design was to create a mosaic of habitats to enhance biodiversity, and the results of the study suggest that PV panels can contribute to niche diversity on a green roof. Further detailed study is required to fully characterise the effects of PV panel density on biodiversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article examines the effectiveness of two innovative retrofitting solutions at enhancing the seismic behaviour of a substandard reinforced concrete building tested on a shake table as part of the Pan-European funded project BANDIT. To simulate typical substandard construction, the reinforcement of columns and beam-column joints of the full-scale structure had inadequate detailing. An initial series of shake table tests were carried out to assess the seismic behaviour of the bare building and the effectiveness of a first retrofitting intervention using Post-Tensioned Metal Straps. After these tests, columns and joints were repaired and subsequently retrofitted using a retrofitting solution consisting of Carbon Fibre Reinforced Polymers and Post-Tensioned Metal Straps applied on opposite frames of the building. The building was then subjected to unidirectional and three-dimensional incremental seismic excitations to assess the effectiveness of the two retrofitting solutions at improving the global and local building performance. The article provides details of the above shake table testing programme and retrofitting solutions, and discusses the test results in terms of the observed damage, global damage indexes, performance levels and local strains. It is shown that whilst the original bare building was significantly damaged at a peak ground acceleration (PGA) of 0.15g, the retrofitted building resisted severe threedimensional shake table tests up to PGA=0.60g without failure. Moreover, the retrofitting intervention enhanced the interstorey drift ratio capacity of the 1st and 2nd floors by 160% and 110%, respectively. Therefore, the proposed dual retrofitting system is proven to be very effective for improving the seismic performance of substandard buildings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An in situ experiment in a full scale timber frame test building was carried out to compare the hygrothermal performance of Hemp and Stone Wool insulations of identical thermal conductivity. Hemp and Stone Wool insulations were installed in timber frame wall panels without vapour barrier. The comparison was made in terms of heat transfer properties, likelihood of mould growth and condensation. Step changes in internal relative humidity were performed to explore the effect of high and normal internal moisture load on the wall panels. No significant difference between the average equivalent thermal transmittance (U-values) of the panels incorporating Hemp and Stone Wool insulations was observed. The average equivalent U-values of the panels were closer to the calculated U-values of the panels based on the manufacturers’ declared thermal conductivity of Hemp and Stone Wool insulations. It was observed that the placement of heat flux sensor along the depth of the insulation had significant influence on the measured equivalent U-value of the panels during high internal moisture load. The frequency and likelihood of condensation was higher in the interface of Stone Wool and Oriented Strand Board (OSB). In terms of the parametric assessment of mould germination potential, relative humidity, temperature and exposure conditions in the insulation-OSB interfaces were found to be favourable to germination of mould spore. However, when the insulations were dismantled, no mould was visually detected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents the results of a laboratory investigation on the hygric properties of five hemp insulation materials commercially available in the UK. The hemp fibre content varies between 30-95% in the total fibre content of the insulation materials examined. The adsorption-desorption isotherm, moisture buffer value, vapour diffusion resistance factor and water absorption coefficient were determined for the insulation materials investigated. The results showed that the hygric properties of the hemp insulation materials could vary widely depending on the constituents and fibrous structure. The considerable differences noted in the hygric properties of the insulation materials examined could potentially influence their hygrothermal performance as part of a building thermal envelope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effectiveness of a novel Post-Tensioned Metal Strapping (PTMS) technique at enhancing the seismic behaviour of a substandard RC building was investigated through full-scale shake-table tests during the EU-funded project BANDIT. The building had inadequate reinforcement detailing in columns and joints to replicate old construction practices. After the bare building was initially damaged significantly, it was repaired and strengthened with PTMS to perform additional seismic tests. The PTMS technique improved considerably the seismic performance of the tested building. Whilst the bare building experienced critical damage at an earthquake of PGA=0.15g, the PTMS-strengthened building sustained a PGA=0.35g earthquake without compromising stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moisture and heat management properties of Hemp and Stone Wool insulations were studied by mounting them between a hot and a cold climate chamber. Both insulations were exposed to identical hygrothermal boundary conditions. Quasi steady state and dynamic tests were carried out at a range of relative humidity exposures. The likelihood of interstitial condensation was assessed and equivalent thermal conductivity values of the insulations were determined. The adsorption-desorption isotherms of the insulations were also determined in a dynamic vapour sorption (DVS) instrument. It was observed that the likelihood of condensation was higher in Stone Wool insulation than in Hemp insulation. Hemp insulation performed better in managing moisture due to its high hygric inertia and water absorption capacity. It was observed that the equivalent thermal conductivity of Stone Wool insulation was dependent on enthalpy flow and phase change of moisture. The equivalent thermal conductivity of Hemp insulation was close to its declared thermal conductivity in dynamic conditions when high relative humidity exposures were transient. In quasi steady state boundary conditions, when the insulation was allowed to reach the equilibrium moisture content at ranges of relative humidity, there was a moisture dependent increase of thermal conductivity in Hemp insulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a scientific development to address the current absence of a convenient technique to identify the ductile to brittle transition of bentonite clay mats. The instrumented indentation and 3-point bending tests were performed on different liquid polymer hydrated bentonite clay mats at varying moisture content. Properties measured include modified Brinell Hardness Number (BHN) and elastic structural stiffness (EI). The dependence of flexural stiffness on moisture content is demonstrated to conform to a best power function variation. The ductile to brittle transition of clay mat is affected primarily by the change in the moisture content and for the clay mat to remain flexible, critical moisture content of 1.7 times of its plastic limit is required. Results also indicate that a strong correlation between indentation hardness and the structural stiffness. The subsequent outcome in the development of a portable quality control device to monitor the acceptable moisture content level to ensure flexibility of the clay mats was also described in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Moisture desorption observations from two bentonite clay mats subjected to ten environmental zones with individually different combinations of laboratory-controlled constant temperatures (between 20 °C and 40 °C) and relative humidity (between 15% and 70%) are presented. These laboratory observations are compared with predictions from mathematical models, such as thin-layer drying equations and kinetic drying models proposed by Page, Wang and Singh, and Henderson and Pabis. The quality of fit of these models is assessed using standard error (SE) of estimate, relative percent of error, and coefficient of correlation. The Page model was found to better predict the drying kinetics of the bentonite clay mats for the simulated tropical climates. Critical study on the drying constant and moisture diffusion coefficient helps to assess the efficacy of a polymer to retain moisture and control desorption through water molecule bonding. This is further substantiated with the Guggenheim–Anderson–De Boer (GAB) desorption isotherm model which is presented.