3 resultados para stress response

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Estudos recentes estabelecem uma ligação entre erros na tradução do mRNA e cancro, envelhecimento e neurodegeneração. RNAs de transferência mutantes que introduzem aminoácidos em locais errados nas proteínas aumentam a produção de espécies reactivas de oxigénio e a expressão de genes que regulam autofagia, ribofagia, degradação de proteínas não-funcionais e protecção contra o stress oxidativo. Erros na tradução do mRNA estão portanto relacionados com stress proteotóxico. Sabe-se agora que o mecanismo de toxicidade do crómio está associado à diminuição da fidelidade de tradução e à agregação de proteínas com malformações que destabilizam a sua estrutura terciária. Desta forma, é possível que os efeitos do stress ambiental ao nível da degeneração celular possam estar relacionados com a alteração da integridade da maquinaria da tradução. Neste estudo procedeu-se a uma avaliação alargada do impacto do stress ambiental na fidelidade da síntese de proteínas, utilizando S. cerevisiae como um sistema modelo. Para isso recorreu-se a repórteres policistrónicos de luciferase que permitiram quantificar especificamente a supressão de codões de terminação e o erro na leitura do codão AUG em células exposta a concentações não letais de metais pesados, etanol, cafeína e H2O2. Os resultados sugerem que a maquinaria de tradução é na generalidade muito resistente ao stress ambiental, devido a uma conjugação de mecanismos de homeostase que muito eficientemente antagonizam o impacto negativo dos erros de tradução. A nossa abordagem quantitativa permitiu-nos a identificar genes regulados por uma resposta programada ao stress ambiental que são também essenciais para mitigar a ocorrência de erros de tradução, nomeadamente, HSP12, HSP104 e RPN4. A exposição prolongada ao stress ambiental conduz à saturação dos mecanismos de homeostase, contribuindo para a acumulação de proteínas contendo erros de tradução e diminuindo a disponibilidade de proteínas funcionais directamente envolvidas na manutenção da fidelidade de tradução e integridade celular. Ao contrário de outras Hsps, a Hsp12p adopta normalmente uma localização membranar em condições de stress, que pode modular a fluidez e estabilidade membranar, sugerindo que a membrana plasmática é um alvo preferencial da perda de fidelidade da tradução. Para melhor compreender as respostas celulares aos erros de tradução, células contendo deleções em genes codificadores das Hsps foram transformadas com tRNAs mutantes que introduzem alterações no proteoma. Os nossos resultados demonstram que para além da resposta geral ao stress, estes tRNAs induzem alterações a nível do metabolismo celular e um aumento de aminoacilação com Metionina em vários tRNAs, sugerindo um mecanismo de protecção contra espécies reactivas de oxigénio. Em conclusão, este estudo sugere um papel para os erros de tradução na gestão de recursos energéticos e na adaptação das células a ambientes desfavoráveis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As proteínas existentes nas células são produzidas pelo mecanismo de tradução do mRNA, no qual a informação genética contida nos genes é descodificada em cadeias polipeptídicas. O código genético, que define as regras de descodificação do genoma, minimiza os erros de tradução do mRNA, garantindo a síntese de proteínas com elevada fidelidade. Esta é essencial para a estabilidade do proteoma e para a manutenção e funcionamento dos processos celulares. Em condições fisiológicas normais, os erros da tradução do mRNA ocorrem com frequências que variam de 10-3 a 10-5 erros por codão descodificado. Situações que aumentam este erro basal geralmente estão associadas ao envelhecimento, stresse e a doenças; no entanto, em certos organismos o código genético é traduzido naturalmente com elevado erro, indicando que a síntese de proteínas aberrantes pode de algum modo ser vantajosa. A fim de estudar a resposta celular aos erros de tradução do mRNA, construímos leveduras que incorporam serina no proteoma em resposta a um codão de leucina, usando a expressão constitutiva de um tRNASer mutante. Este fenómeno genético artificial provocou uma forte diminuição da esporulação, da viabilidade e da eficiência de mating, afectando imensamente a reprodução sexual da levedura. Observou-se também uma grande heterogeneidade no tamanho e na forma das células e elevada instabilidade genómica, com o aparecimento de populações poliplóides e aneuplóides. No sentido de clarificar as bases celulares e moleculares daqueles fenótipos e compreender melhor a biologia do erro de tradução do mRNA, construímos também células de levedura que inserem serina em resposta a um codão de leucina de modo indutível e controlado. Utilizaram-se perfis de mRNA total e de mRNA associado a polissomas para elucidar a resposta celular ao erro de tradução do mRNA. Observou-se a indução de genes envolvidos na resposta ao stresse geral, stresse oxidativo e na unfolded protein response (UPR). Um aumento significativo de espécies reactivas de oxigénio (ROS) e um forte impacto negativo na capacidade das células pós-mitóticas re-iniciarem o crescimento foram também observados. Este fenótipo de perda de viabilidade celular foi resgatado por scavangers de ROS, indicando que o stresse oxidativo é a principal causa de morte celular causada pelos erros de tradução. Este estudo levanta a hipótese de que o stresse oxidativo e a acumulação de ROS, ao invés do colapso súbito do proteoma, são as principais causas da degeneração celular e das doenças humanas associadas aos erros de tradução do genoma. ABSTRACT: Proteins are synthesized through the mechanism of translation, which uses the genetic code to transform the nucleic acids based information of the genome into the amino acids based information of the proteome. The genetic code evolved in such a manner that translational errors are kept to a minimum and even when they occur their impact is minimized by similar chemical properties of the amino acids. Protein synthesis fidelity is essential for proteome stability and for functional maintenance of cellular processes. Indeed, under normal physiological conditions, mistranslation occurs at frequencies that range from 10-3 to 10-5 errors per codon decoded. Situations where this basal error frequency increases are usually associated to aging and disease. However, there are some organisms where genetic code errors occur naturally at high level, suggesting that mRNA mistranslation can somehow be beneficial. In order to study the cellular response to mRNA mistranslation, we have engineered single codon mistranslation in yeast cells, using constitutive expression of mutant tRNASer genes. These mistranslating strains inserted serines at leucine-CUG sites on a proteome wide scale due to competition between the wild type tRNALeu with the mutant tRNASer. Such mistranslation event decreased yeast sporulation, viability and mating efficiencies sharply and affected sexual reproduction strongly. High heterogeneity in cell size and shape and high instability in the genome were also observed, with the appearance of some polyploid or aneuploid cell populations. To further study the cellular and molecular basis of those phenotypes and the biology of mRNA mistranslation, we have also engineered inducible mRNA misreading in yeast and used total mRNA and polysome associated mRNA profiling to determine whether codon misreading affects gene expression. Induced mistranslation up-regulated genes involved in the general stress response, oxidative stress and in the unfolded protein response (UPR). A significant increase in reactive oxygen species (ROS) and a strong negative impact on the capacity of post-mitotic cells to re-initiate growth in fresh media were also observed. This cell viability phenotype was rescued by scavengers of ROS, indicating that oxidative stress is the main cause of cell death caused by mRNA mistranslation. This study provides strong support for the hypothesis that oxidative stress and ROS accumulation, rather than sudden proteome collapse or major proteome disruption, are the main cause of the cellular degeneration observed in human diseases associated mRNA mistranslation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Várias espécies do género Candida traduzem o codão CUG de leucine como serina. Em C. albicans este codão é traduzido pelo tRNACAG Ser de serina que é reconhecido por leucil- e seril-tRNA sintetases (LeuRS e SerRS), permitindo a incorporação de leucina ou serina em posições com CUG. Em condições padrão de crescimento os codões CUG é incorporam 3% de leucina e 97% de serina, no entanto estes valores são flexíveis uma vez que a incorporação de serina pode variar entre 0.6% e 5% em resposta a condições de stress. Estudos anteriores realizados in vivo em Escherichia coli sugeriram que a ambiguidade em codões CUG é regulada pela SerRS. De facto, o gene da SerRS de C. albicans tem um codão CUG na posição 197 (Ser197) cuja descodificação ambígua resulta na produção de duas isoformas de SerRS. A isoforma SerRS_Leu197 é mais ativa, apesar de menos estável, que a isoforma SerRS_Ser197, suportando a ideia da existência de um feedback loop negativo, envolvendo estas duas isoformas de SerRS, a enzima LeuRS e o tRNACAG Ser, que mantem os níveis de incorporação de leucina no codões CUG baixos. Nesta tese demonstramos que tal mecanismo não é operacional nas células de C. albicans. De facto, os níveis de incorporação de leucina em codões CUG flutuam drasticamente em resposta a alterações ambientais. Por exemplo, a incorporação de leucina pode chegar a níveis de 49.33% na presença de macrófagos e anfotericina B, mostrando a notória tolerância de C. albicans à ambiguidade. Para compreender a relevância biológica da ambiguidade do código genético em C. albicans construímos estirpes que incorporam serina em vários codões. Apesar da taxa crescimento ter sido negativamente afetada em condições padrão de crescimento, as estirpes construídas crescem favoravelmente em várias condições de stresse, sugerindo que a ambiguidade desempenha um papel importante na adaptação a novos nichos ecológicos. O transcriptoma das estirpes construídas de C. albicans e Saccharomyces. cerevisiae mostram que as leveduras respondem à ambiguidade dos codões de modo distinto. A ambiguidade induziu uma desregulação moderada da expressão génica de C. albicans, mas ativou uma resposta comum ao stresse em S. cerevisiae. O único processo celular que foi induzido na maioria das estirpes foi a oxidação redução. De salientar, que enriquecimento em elementos cis de fatores de transcrição que regulam a resposta à ambiguidade em ambas as leveduras foi distinta, sugerindo que ambas respondem ao stresse de modo diferente. Na globalidade, o nosso estudo aprofunda o conhecimento da elevada tolerância à ambiguidade de codões em C. albicans. Os resultados sugerem que este fungo usa a ambiguidade do codão CUG durante infeção, possivelmente para modular a sua interação com o hospedeiro e a resposta a drogas antifúngicas.