2 resultados para Timed and Probabilistic Automata
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
The exponential growth of the world population has led to an increase of settlements often located in areas prone to natural disasters, including earthquakes. Consequently, despite the important advances in the field of natural catastrophes modelling and risk mitigation actions, the overall human losses have continued to increase and unprecedented economic losses have been registered. In the research work presented herein, various areas of earthquake engineering and seismology are thoroughly investigated, and a case study application for mainland Portugal is performed. Seismic risk assessment is a critical link in the reduction of casualties and damages due to earthquakes. Recognition of this relation has led to a rapid rise in demand for accurate, reliable and flexible numerical tools and software. In the present work, an open-source platform for seismic hazard and risk assessment is developed. This software is capable of computing the distribution of losses or damage for an earthquake scenario (deterministic event-based) or earthquake losses due to all the possible seismic events that might occur within a region for a given interval of time (probabilistic event-based). This effort has been developed following an open and transparent philosophy and therefore, it is available to any individual or institution. The estimation of the seismic risk depends mainly on three components: seismic hazard, exposure and vulnerability. The latter component assumes special importance, as by intervening with appropriate retrofitting solutions, it may be possible to decrease directly the seismic risk. The employment of analytical methodologies is fundamental in the assessment of structural vulnerability, particularly in regions where post-earthquake building damage might not be available. Several common methodologies are investigated, and conclusions are yielded regarding the method that can provide an optimal balance between accuracy and computational effort. In addition, a simplified approach based on the displacement-based earthquake loss assessment (DBELA) is proposed, which allows for the rapid estimation of fragility curves, considering a wide spectrum of uncertainties. A novel vulnerability model for the reinforced concrete building stock in Portugal is proposed in this work, using statistical information collected from hundreds of real buildings. An analytical approach based on nonlinear time history analysis is adopted and the impact of a set of key parameters investigated, including the damage state criteria and the chosen intensity measure type. A comprehensive review of previous studies that contributed to the understanding of the seismic hazard and risk for Portugal is presented. An existing seismic source model was employed with recently proposed attenuation models to calculate probabilistic seismic hazard throughout the territory. The latter results are combined with information from the 2011 Building Census and the aforementioned vulnerability model to estimate economic loss maps for a return period of 475 years. These losses are disaggregated across the different building typologies and conclusions are yielded regarding the type of construction more vulnerable to seismic activity.
Resumo:
This thesis focuses on the application of optimal alarm systems to non linear time series models. The most common classes of models in the analysis of real-valued and integer-valued time series are described. The construction of optimal alarm systems is covered and its applications explored. Considering models with conditional heteroscedasticity, particular attention is given to the Fractionally Integrated Asymmetric Power ARCH, FIAPARCH(p; d; q) model and an optimal alarm system is implemented, following both classical and Bayesian methodologies. Taking into consideration the particular characteristics of the APARCH(p; q) representation for financial time series, the introduction of a possible counterpart for modelling time series of counts is proposed: the INteger-valued Asymmetric Power ARCH, INAPARCH(p; q). The probabilistic properties of the INAPARCH(1; 1) model are comprehensively studied, the conditional maximum likelihood (ML) estimation method is applied and the asymptotic properties of the conditional ML estimator are obtained. The final part of the work consists on the implementation of an optimal alarm system to the INAPARCH(1; 1) model. An application is presented to real data series.