2 resultados para ABERRANT GLYCOSYLATION

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A glicosilação não-enzimática e o stress oxidativo representam dois processos importantes visto desempenharem um papel importante no que respeita às complicações de vários processos patofisiológicos. No presente, a associação entre a glicosilação não-enzimática e a oxidação de proteínas é reconhecida como sendo um dos principais responsáveis pela acumulação de proteínas não-funcionais que, por sua vez, promove uma contínua sensibilização para um aumento do stress oxidativo ao nível celular. Embora esteja disponível bastante informação no que respeita aos dois processos e suas consequências ao nível estrutural e funcional, permanecem questões por esclarecer acerca do que se desenvolve ao nível molecular. Com o objectivo de contribuir para uma melhor compreensão da relação entre a glicosilação não-enzimática e a oxidação, proteínas modelo (albumina, insulina e histonas H2B e H1) foram submetidas a sistemas in vitro de glicosilação não-enzimática e oxidação em condições controladas e durante um período de tempo específico. A identificação dos locais de glicosilação e oxidação foi realizada através de uma abordagem proteómica, na qual após digestão enzimática se procedeu à análise por cromatografia líquida acoplada a espectrometria de massa tandem (MALDI-TOF/TOF). Esta abordagem permitiu a obtenção de elevadas taxas de cobertura das sequências proteicas, permitindo a identificação dos locais preferenciais de glicosilação e oxidação nas diferentes proteínas estudadas. Como esperado, os resíduos de lisina foram os preferencialmente glicosilados. No que respeita à oxidação, além das modificações envolvendo hidroxilações e adições de oxigénio, foram identificadas deamidações, carbamilações e conversões oxidativas específicas de vários aminoácidos. No geral, os resíduos mais afectados pela oxidação foram os resíduos de cisteína, metionina, triptofano, tirosina, prolina, lisina e fenilalanina. Ao longo do período de tempo estudado, os resultados indicaram que a oxidação teve início em zonas expostas da proteína e/ou localizadas na vizinhança de resíduos de cisteína e metionina, ao invés de exibir um comportamente aleatório, ocorrendo de uma forma nãolinear por sua vez dependente da estabilidade conformacional da proteína. O estudo ao longo do tempo mostrou igualmente que, no caso das proteínas préglicosiladas, a oxidação das mesmas ocorreu de forma mais rápida e acentuada, sugerindo que as alterações estruturais induzidas pela glicosilação promovem um estado pro-oxidativo. No caso das proteínas pré-glicosiladas e oxidadas, foi identificado um maior número de modificações oxidativas assim como de resíduos modificados na vizinhança de resíduos glicosilados. Com esta abordagem é realizada uma importante contribuição na investigação das consequências do dano ‘glico-oxidativo’ em proteínas ao nível molecular através da combinação da espectrometria de massa e da bioinformática.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low level protein synthesis errors can have profound effects on normal cell physiology and disease development, namely neurodegeneration, cancer and aging. The biology of errors introduced into proteins during mRNA translation, herein referred as mistranslation, is not yet fully understood. In order to shed new light into this biological phenomenon, we have engineered constitutive codon misreading in S. cerevisiae, using a mutant tRNA that misreads leucine CUG codons as serine, representing a 240 fold increase in mRNA translational error relative to typical physiological error (0.0001%). Our studies show that mistranslation induces autophagic activity, increases accumulation of insoluble proteins, production of reactive oxygen species, and morphological disruption of the mitochondrial network. Mistranslation also up-regulates the expression of the longevity gene PNC1, which is a regulator of Sir2p deacetylase activity. We show here that both PNC1 and SIR2 are involved in the regulation of autophagy induced by mistranslation, but not by starvation-induced autophagy. Mistranslation leads to P-body but not stress-granule assembly, down-regulates the expression of ribosomal protein genes and increases slightly the selective degradation of ribosomes (ribophagy). The study also indicates that yeast cells are much more resistant to mistranslation than expected and highlights the importance of autophagy in the cellular response to mistranslation. Morpho-functional alterations of the mitochondrial network are the most visible phenotype of mistranslation. Since most of the basic cellular processes are conserved between yeast and humans, this study reinforces the importance of yeast as a model system to study mistranslation and suggests that oxidative stress and accumulation of misfolded proteins arising from aberrant protein synthesis are important causes of the cellular degeneration observed in human diseases associated to mRNA mistranslation.