60 resultados para Inibidores - proteínas


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photodynamic inactivation (PDI) is defined as the process of cell destruction by oxidative stress resulting from the interaction between light and a photosensitizer (PS), in the presence of molecular oxygen. PDI of bacteria has been extensively studied in recent years, proving to be a promising alternative to conventional antimicrobial agents for the treatment of superficial and localized infections. Moreover, the applicability of PDI goes far beyond the clinical field, as its potential use in water disinfection, using PS immobilized on solid supports, is currently under study. The aim of the first part of this work was to study the oxidative modifications in phospholipids, nucleic acids and proteins of Escherichia coli and Staphylococcus warneri, subjected to photodynamic treatment with cationic porphyrins. The aims of the second part of the work were to study the efficiency of PDI in aquaculture water and the influence of different physicalchemical parameters in this process, using the Gram-negative bioluminescent bacterium Vibrio fischeri, and to evaluate the possibility of recycling cationic PS immobilized on magnetic nanoparticles. To study the oxidative changes in membrane phospholipids, a lipidomic approach has been used, combining chromatographic techniques and mass spectrometry. The FOX2 assay was used to determine the concentration of lipid hydroperoxides generated after treatment. The oxidative modifications in the proteins were analyzed by one-dimensional polyacrylamide gel electrophoresis (SDS-PAGE). Changes in the intracellular nucleic acids were analyzed by agarose gel electrophoresis and the concentration of doublestranded DNA was determined by fluorimetry. The oxidative changes of bacterial PDI at the molecular level were analyzed by infrared spectroscopy. In laboratory tests, bacteria (108 CFU mL-1) were irradiated with white light (4.0 mW cm-2) after incubation with the PS (Tri-Py+-Me-PF or Tetra-Py+-Me) at concentrations of 0.5 and 5.0 μM for S. warneri and E. coli, respectively. Bacteria were irradiated with different light doses (up to 9.6 J cm-2 for S. warneri and up to 64.8 J cm-2 for E. coli) and the changes were evaluated throughout the irradiation time. In the study of phospholipids, only the porphyrin Tri-Py+-Me-PF and a light dose of 64.8 J cm-2 were tested. The efficiency of PDI in aquaculture has been evaluated in two different conditions: in buffer solution, varying temperature, pH, salinity and oxygen concentration, and in aquaculture water samples, to reproduce the conditions of PDI in situ. The kinetics of the process was determined in realtime during the experiments by measuring the bioluminescence of V. fischeri (107 CFU mL-1, corresponding to a level of bioluminescence of 105 relative light units). A concentration of 5.0 μM of Tri-Py+-Me-PF was used in the experiments with buffer solution, and 10 to 50 μM in the experiments with aquaculture water. Artificial white light (4.0 mW cm-2) and solar irradiation (40 mW cm-2) were used as light sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genetic code is not universal. Alterations to its standard form have been discovered in both prokaryotes and eukaryotes and demolished the dogma of an immutable code. For instance, several Candida species translate the standard leucine CUG codon as serine. In the case of the human pathogen Candida albicans, a serine tRNA (tRNACAGSer) incorporates in vivo 97% of serine and 3% of leucine in proteins at CUG sites. Such ambiguity is flexible and the level of leucine incorporation increases significantly in response to environmental stress. To elucidate the function of such ambiguity and clarify whether the identity of the CUG codon could be reverted from serine back to leucine, we have developed a forced evolution strategy to increase leucine incorporation at CUGs and a fluorescent reporter system to monitor such incorporation in vivo. Leucine misincorporation increased from 3% up to nearly 100%, reverting CUG identity from serine back to leucine. Growth assays showed that increasing leucine incorporation produced impressive arrays of phenotypes of high adaptive potential. In particular, strains with high levels of leucine misincorporation exhibited novel phenotypes and high level of tolerance to antifungals. Whole genome re-sequencing revealed that increasing levels of leucine incorporation were associated with accumulation of single nucleotide polymorphisms (SNPs) and loss of heterozygozity (LOH) in the higher misincorporating strains. SNPs accumulated preferentially in genes involved in cell adhesion, filamentous growth and biofilm formation, indicating that C. albicans uses its natural CUG ambiguity to increase genetic diversity in pathogenesis and drug resistance related processes. The overall data provided evidence for unantecipated flexibility of the C. albicans genetic code and highlighted new roles of codon ambiguity on the evolution of genetic and phenotypic diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coral reefs are of utmost ecological and economical importance but are currently in global decline due to climate change and anthropogenic disturbances. Corals, as well as other cnidarian species, live in symbiosis with photosynthetic dinoflagellates of the genus Symbiodinium. This relationship provides the cnidarian host with alternative metabolic pathways, as the symbionts translocate photosynthetic carbon to the animal. Besides this autotrophic nutrition mode, symbiotic cnidarians also take up organic matter from the environment (heterotrophy). The nutritional balance between auto- and heterotrophy is critical for the functioning, fitness and resilience of the cnidariandinoflagellate symbiosis. New methodological approaches were developed to better understand the role of auto- and heterotrophy in the ecophysiology of cnidarians associated with Symbiodinium, and the ecological implications of this trophic plasticity. Specifically, the new approaches were developed to assess photophysiology, biomass production of the model organism Aiptasia sp. and molecular tools to investigate heterotrophy in the cnidarian-dinoflagellate symbiosis. Using these approaches, we were able to non-invasively assess the photophysiological spatial heterogeneity of symbiotic cnidarians and identify spatial patterns between chlorophyll fluorescence and relative content of chlorophyll a and green-fluorescent proteins. Optimal culture conditions to maximize the biomass production of Aiptasia pallida were identified, as well as their implications on the fatty acid composition of the anemones. Molecular trophic markers were used to determine prey digestion times in symbiotic cnidarians, which vary between 1-3 days depending on prey species, predator species and the feeding history of the predator. This method was also used to demonstrate that microalgae is a potential food source for symbiotic corals. By using a stable isotope approach to assess the trophic ecology of the facultative symbiotic Oculina arbuscula in situ, it was possible to demonstrate the importance of pico- and nanoplanktonic organisms, particularly autotrophic, in the nutrition of symbiotic corals. Finally, we showed the effects of functional diversity of Symbiodinium on the nutritional plasticity of the cnidarian-dinoflagellate symbiosis. Symbiont identity defines this plasticity through its individual metabolic requirements, capacity to fix carbon, quantity of translocated carbon and the host’s capacity to feed and digest prey.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A promoção de uma sociedade mais inclusiva tem vindo a refletir-se numa progressiva tomada de consciência das dimensões associadas ao turismo acessível para todos. Ao mesmo tempo, no plano discursivo, assume-se cada vez mais o turismo como um bem social de primeira necessidade, essencial na qualidade de vida. No entanto, também é igualmente reconhecido que o acesso às práticas turísticas, por parte de pessoas com incapacidade, continua a ser moldado por dificuldades de vária ordem, às quais o sector do turismo não tem sabido responder, ou, pelo menos, a perceção consciente deste facto social tem sido muito débil e incipiente. Partindo destes pressupostos, a nossa investigação centrou-se, particularmente, na compreensão das dinâmicas de envolvimento e de participação das pessoas com incapacidade nas atividades turísticas. Concretamente, pretendemos analisar os aspetos associados à experiência das pessoas com incapacidade visual ou incapacidade física, identificando os fatores que restringem (inibidores) e os fatores que afetam a decisão de viajar de forma positiva (os facilitadores), procurando compreender como é que as pessoas se adaptam e se tornam viajantes ativos. Para a concretização deste objetivo utilizou-se um estudo qualitativo, baseado em entrevistas longas, que procurou dar voz aos atores com incapacidade visual e física. O tratamento da informação recolhida foi efetuado com base na análise de conteúdo de tipo temático-categorial. Os resultados assim obtidos permitem extrair as seguintes conclusões principais: a participação em atividades turísticas por parte das pessoas com incapacidade física e visual resulta de um processo dinâmico e interativo, no qual intervêm múltiplos fatores, com influência positiva ou negativa, na confluência do seu contexto pessoal, da sua condição de incapacidade e do seu ambiental social, com um impacto variável nas diferentes etapas do processo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms of secretory granule biogenesis and regulated secretion of digestive enzymes in pancreatic acinar cells are still not well understood. To shed light on these processes, which are of biological and clinical importance (e.g., pancreatitis), a better molecular understanding of the components of the granule membrane, their functions and interactions is required. The application of proteomics has largely contributed to the identification of novel zymogen granule (ZG) proteins but was not yet accompanied by a better characterization of their functions. In this study we aimed at a) isolation and identification of novel membrane-associated ZG proteins; b) characterization of the biochemical properties and function of the secretory lectin ZG16p, a membrane-associated protein; c) exploring the potential of ZG16p as a new tool to label the endolysosomal compartment. First, we have performed a suborganellar proteomics approach by combining protein analysis by 2D-PAGE and identification by mass spectrometry, which has led to the identification of novel peripheral ZGM proteins with proteoglycan-binding properties (e.g., chymase, PpiB). Then, we have unveiled new molecular properties and (multiple) functions of the secretory lectin ZG16p. ZG16p is a unique mammalian lectin with glycan and proteoglycan binding properties. Here, I revealed for the first time that ZG16p is highly protease resistant by developing an enterokinase-digestion assay. In addition I revealed that ZG16p binds to a high molecular weight complex at the ZGM (which is also protease resistant) and forms highly stable dimers. In light of these findings I suggest that ZG16p is a key component of a predicted submembranous granule matrix attached to the luminal side of the ZGM that fulfils important functions during sorting and packaging of zymogens. ZG16p, may act as a linker between the matrix and aggregated zymogens due to dimer formation. Furthermore, ZG16p protease resistance might be of higher importance after secretion since it is known that ZG16p binds to pathogenic fungi in the gut. I have further investigated the role of ZG16p binding motifs in its targeting to ZG in AR42J cells, a pancreatic model system. Point mutations of the glycan and the proteoglycan binding motifs did not inhibit the targeting of ZG16p to ZG in AR42J cells. I have also demonstrated that when ZG16p is present in the cytoplasm it interacts with and modulates the endo-lysosomal compartment. Since it is known that impaired autophagy due to lysosomal malfunction is involved in the course of pancreatitis, a potential role of ZG16p in pancreatitis is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mitochondria are central organelles for cell survival with particular relevance in energy production and signalling, being mitochondrial fatty acid β–oxidation (FAO) one of the metabolic pathways harboured in this organelle. FAO disorders (FAOD) are among the most well studied inborn errors of metabolism, mainly due to their impact in health. Nevertheless, some questions remain unsolved, as their prevalence in certain European regions and how pathophysiological determinants combine towards the phenotype. Analysis of data from newborn screening programs from Portugal and Spain allowed the estimation of the birth prevalence of FAOD revealing that this group of disorders presents in Iberia (and particularly in Portugal) one of the highest European birth prevalence, mainly due to the high birth prevalence of medium chain acyl-CoA dehydrogenase deficiency. These results highlight the impact of this group of genetic disorders in this European region. The characterization of mitochondrial proteome, from patients fibroblasts with FAOD, namely multiple acyl-CoA dehydrogenase deficiency (MADD) and long chain acyl-CoA dehydrogenase deficiency (LCHADD), provided a global perspective of the mitochondrial proteome plasticity in these disorders and highlights the main molecular pathways involved in their pathogenesis. Severe MADD forms show an overexpression of chaperones, antioxidant enzymes (MnSOD), and apoptotic proteins. An overexpression of glycolytic enzymes, which reflects cellular adaptation to energy deficiency due to FAO blockage, was also observed. When LCHADD fibroblasts were analysed a metabolic switching to glycolysis was also observed with overexpression of apoptotic proteins and modulation of the antioxidant defence system. Severe LCHADD present increased ROS alongside with up regulation of MnSOD while moderate forms have lower ROS and down-regulation of MnSOD. This probably reflects the role of MnSOD in buffering cellular ROS, maintain them at levels that allow cells to avoid damage and start a cellular response towards survival. When ROS levels are very high cells have to overexpress MnSOD for detoxifying proposes. When severe forms of MADD were compared to moderate forms no major differences were noticed, most probably because ROS levels in moderate MADD are high enough to trigger a response similar to that observed in severe forms. Our data highlights, for the first time, the differences in the modulation of antioxidant defence among FAOD spectrum. Overall, the data reveals the main pathways modulated in FAOD and the importance of ROS levels and antioxidant defence system modulation for disease severity. These results highlight the complex interaction between phenotypic determinants in FAOD that include genetic, epigenetic and environmental factors. The development of future better treatment approaches is dependent on the knowledge on how all these determinants interact towards phenotype.!

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid oxide fuel (SOFCs) and electrolyzer (SOECs) cells have been promoted as promising technologies for the stabilization of fuel supply and usage in future green energy systems. SOFCs are devices that produce electricity by the oxidation of hydrogen or hydrocarbon fuels with high efficiency. Conversely, SOECs can offer the reverse reaction, where synthetic fuels can be generated by the input of renewable electricity. Due to this similar but inverse nature of SOFCs and SOECs, these devices have traditionally been constructed from comparable materials. Nonetheless, several limitations have hindered the entry of SOFCs and SOECs into the marketplace. One of the most debilitating is associated with chemical interreactions between cell components that can lead to poor longevities at high working temperatures and/or depleted electrochemcial performance. Normally such interreactions are countered by the introduction of thin, purely ionic conducting, buffer layers between the electrode and electrolyte interface. The objective of this thesis is to assess if possible improvements in electrode kinetics can also be obtained by modifying the transport properties of these buffer layers by the introduction of multivalent cations. The introduction of minor electronic conductivity in the surface of the electrolyte material has previously been shown to radically enhance the electrochemically active area for oxygen exchange, reducing polarization resistance losses. Hence, the current thesis aims to extend this knowledge to tailor a bi-functional buffer layer that can prevent chemical interreaction while also enhancing electrode kinetics.The thesis selects a typical scenario of an yttria stabilized zirconia electrolyte combined with a lanthanide containing oxygen electrode. Gadolinium, terbium and praseodymium doped cerium oxide materials have been investigated as potential buffer layers. The mixed ionic electronic conducting (MIEC) properties of the doped-cerium materials have been analyzed and collated. A detailed analysis is further presented of the impact of the buffer layers on the kinetics of the oxygen electrode in SOFC and SOEC devices. Special focus is made to assess for potential links between the transport properties of the buffer layer and subsequent electrode performance. The work also evaluates the electrochemical performance of different K2NiF4 structure cathodes deposited onto a peak performing Pr doped-cerium buffer layer, the influence of buffer layer thickness and the Pr content of the ceria buffer layer. It is shown that dramatic increases in electrode performance can be obtained by the introduction of MIEC buffer layers, where the best performances are shown to be offered by buffer layers of highest ambipolar conductivity. These buffer layers are also shown to continue to offer the bifunctional role to protect from unwanted chemical interactions at the electrode/electrolyte interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work reports one possible way to develop new functional coatings used to increase the life time of metallic structures. The functionalities selected and attributed to model coatings in the frame of this work were corrosion protection, self-sensing and prevention of fouling (antifouling). The way used to confer those functionalities to coatings was based on the encapsulation of active compounds (corrosion inhibitors, pH indicators and biocides) in micro and nanocontainers followed by their incorporation into the coating matrices. To confer active corrosion protection, one corrosion inhibitor (2-mercaptobenzothiazole, MBT) was encapsulated in two different containers, firstly in silica nanocapsules (SiNC) and in polyurea microcapsules (PU-MC). The incorporation of both containers in different models coatings shows a significant improvement in the corrosion protection of aluminum alloy 2024 (AA2024). Following the same approach, SiNC and PU-MC were also used for the encapsulation of phenolphthalein (one well known pH indicator) to introduce sensing properties in polymeric coatings. SiNC and PU-MC containing phenolphthalein acted as corrosion sensor, showing a pink coloration due to the beginning of cathodic reaction, resulting in a pH increase identified by those capsules. Their sensing performance was proved in suspension and when integrated in coatings for aluminium alloy 2024 and magnesium alloy AZ31. In a similar way, the biocide activity (antifouling) was assigned to two polymeric matrices using SiNC for encapsulation of one biocide (Dichloro-2-octyl-2H-isothiazol-3-one, DCOIT) and also SiNC-MBT was tested as biocide. The antifouling activity of those two encapsulated compounds was assessed through inhibition and consequent decrease in the bioluminescence of modified E. coli. That effect was verified in suspension and when incorporated in coatings for AISI 1008 carbon steel. The developed micro and nanocontainers presented the desired performance, allowing the introduction of new functionalities to model coatings, showing potential to be used as functional additives in the next generation of multifunctional coatings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and switchable polarization at room temperature. Here we study piezoelectricity and ferroelectricity in the smallest amino acid glycine, representing a broad class of non-centrosymmetric amino acids. Glycine is one of the basic and important elements in biology, as it serves as a building block for proteins. Three polymorphic forms with different physical properties are possible in glycine (α, β and γ), Of special interest for various applications are non-centrosymmetric polymorphs: β-glycine and γ-glycine. The most useful β-polymorph being ferroelectric took much less attention than the other due to its instability under ambient conditions. In this work, we could grow stable microcrystals of β-glycine by the evaporation of aqueous solution on a (111)Pt/Ti/SiO2/Si substrate as a template. The effects of the solution concentration and Pt-assisted nucleation on the crystal growth and phase evolution were characterized by X-ray diffraction analysis and Raman spectroscopy. In addition, spin-coating technique was used for the fabrication of highly aligned nano-islands of β-glycine with regular orientation of the crystallographic axes relative the underlying substrate (Pt). Further we study both as-grown and tip-induced domain structures and polarization switching in the β-glycine molecular systems by Piezoresponse Force Microscopy (PFM) and compare the results with molecular modeling and computer simulations. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of applied voltage and pulse duration. The domain shape is dictated by both internal and external polarization screening mediated by defects and topographic features. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that β-glycine is a uniaxial ferroelectric with the properties controlled by the charged domain walls which in turn can be manipulated by external bias. Besides, nonlinear optical properties of β-glycine were investigated by a second harmonic generation (SHG) method. SHG method confirmed that the 2-fold symmetry is preserved in as-grown crystals, thus reflecting the expected P21 symmetry of the β-phase. Spontaneous polarization direction is found to be parallel to the monoclinic [010] axis and directed along the crystal length. These data are confirmed by computational molecular modeling. Optical measurements revealed also relatively high values of the nonlinear optical susceptibility (50% greater than in the z-cut quartz). The potential of using stable β-glycine crystals in various applications are discussed in this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rapid and specific detection of foodborne bacteria that can cause food spoilage or illness associated to its consumption is an increasingly important task in food industry. Bacterial detection, identification, and classification are generally performed using traditional methods based on biochemical or serological tests and the molecular methods based on DNA or RNA fingerprints. However, these methodologies are expensive, time consuming and laborious. Infrared spectroscopy is a reliable, rapid, and economic technique which could be explored as a tool for bacterial analysis in the food industry. In this thesis it was evaluated the potential of IR spectroscopy to study the bacterial quality of foods. In Chapter 2, it was developed a calibration model that successfully allowed to predict the bacterial concentration of naturally contaminated cooked ham samples kept at refrigeration temperature during 8 days. In this part, it was developed the methodology that allowed the best reproducibility of spectra from bacteria colonies with minimal sample preparation, which was used in the subsequent work. Several attempts trying different resolutions and number of scans in the IR were made. A spectral resolution of 4 cm-1, with 32 scans were the settings that allowed the best results. Subsequently, in Chapter 3, it was made an attempt to identify 22 different foodborne bacterial genera/species using IR spectroscopy coupled with multivariate analysis. The principal component analysis, used as an exploratory technique, allowed to form distinct groups, each one corresponding to a different genus, in most of the cases. Then, a hierarchical cluster analysis was performed to further analyse the group formation and the possibility of distinction between species of the same bacterial genus. It was observed that IR spectroscopy not only is suitable to the distinction of the different genera, but also to differentiate species of the same genus, with the simultaneous use of principal component analysis and cluster analysis techniques. The utilization of IR spectroscopy and multivariate statistical analysis were also investigated in Chapter 4, in order to confirm the presence of Listeria monocytogenes and Salmonella spp. isolated from contaminated foods, after growth in selective medium. This would allow to substitute the traditional biochemical and serological methods that are used to confirm these pathogens and that delay the obtainment of the results up to 2 days. The obtained results allowed the distinction of 3 different Listeria species and the distinction of Salmonella spp. from other bacteria that can be mistaken with them. Finally, in chapter 5, high pressure processing, an emerging methodology that permits to produce microbiologically safe foods and extend their shelf-life, was applied to 12 foodborne bacteria to determine their resistance and the effects of pressure in cells. A treatment of 300 MPa, during 15 minutes at room temperature was applied. Gram-negative bacteria were inactivated to undetectable levels and Gram-positive showed different resistances. Bacillus cereus and Staphylococcus aureus decreased only 2 logs and Listeria innocua decreased about 5 logs. IR spectroscopy was performed in bacterial colonies before and after HPP in order to investigate the alterations of the cellular compounds. It was found that high pressure alters bands assigned to some cellular components as proteins, lipids, oligopolysaccharides, phosphate groups from the cell wall and nucleic acids, suggesting disruption of the cell envelopes. In this work, bacterial quantification and classification, as well as assessment of cellular compounds modification with high pressure processing were successfully performed. Taking this into account, it was showed that IR spectroscopy is a very promising technique to analyse bacteria in a simple and inexpensive manner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although the genetic code is generally viewed as immutable, alterations to its standard form occur in the three domains of life. A remarkable alteration to the standard genetic code occurs in many fungi of the Saccharomycotina CTG clade where the Leucine CUG codon has been reassigned to Serine by a novel transfer RNA (Ser-tRNACAG). The host laboratory made a major breakthrough by reversing this atypical genetic code alteration in the human pathogen Candida albicans using a combination of tRNA engineering, gene recombination and forced evolution. These results raised the hypothesis that synthetic codon ambiguities combined with experimental evolution may release codons from their frozen state. In this thesis we tested this hypothesis using S. cerevisiae as a model system. We generated ambiguity at specific codons in a two-step approach, involving deletion of tRNA genes followed by expression of non-cognate tRNAs that are able to compensate the deleted tRNA. Driven by the notion that rare codons are more susceptible to reassignment than those that are frequently used, we used two deletion strains where there is no cognate tRNA to decode the rare CUC-Leu codon and AGG-Arg codon. We exploited the vulnerability of the latter by engineering mutant tRNAs that misincorporate Ser at these sites. These recombinant strains were evolved over time using experimental evolution. Although there was a strong negative impact on the growth rate of strains expressing mutant tRNAs at high level, such expression at low level had little effect on cell fitness. We found that not only codon ambiguity, but also destabilization of the endogenous tRNA pool has a strong negative impact in growth rate. After evolution, strains expressing the mutant tRNA at high level recovered significantly in several growth parameters, showing that these strains adapt and exhibit higher tolerance to codon ambiguity. A fluorescent reporter system allowing the monitoring of Ser misincorporation showed that serine was indeed incorporated and possibly codon reassignment was achieved. Beside the overall negative consequences of codon ambiguity, we demonstrated that codons that tolerate the loss of their cognate tRNA can also tolerate high Ser misincorporation. This raises the hypothesis that these codons can be reassigned to standard and eventually to new amino acids for the production of proteins with novel properties, contributing to the field of synthetic biology and biotechnology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Helicobacter pylori is a bacterial pathogen that affects more than half of the world’s population with gastro-intestinal diseases and is associated with gastric cancer. The cell surface of H. pylori is decorated with lipopolysaccharides (LPSs) composed of three distinct regions: a variable polysaccharide moiety (O-chain), a structurally conserved core oligosaccharide, and a lipid A region that anchors the LPS to the cell membrane. The O-chain of H. pylori LPS, exhibits unique oligosaccharide structures, such as Lewis (Le) antigens, similar to those present in the gastric mucosa and are involved in interactions with the host. Glucan, heptoglycan, and riban domains are present in the outer core region of some H. pylori LPSs. Amylose-like glycans and mannans are also constituents of some H. pylori strains, possibly co-expressed with LPSs. The complexity of H. pylori LPSs has hampered the establishment of accurate structure-function relationships in interactions with the host, and the design of carbohydrate-based therapeutics, such as vaccines. Carbohydrate microarrays are recent powerful and sensitive tools for studying carbohydrate antigens and, since their emergence, are providing insights into the function of carbohydrates and their involvement in pathogen-host interactions. The major goals of this thesis were the structural analysis of LPSs from H. pylori strains isolated from gastric biopsies of symptomatic Portuguese patients and the construction of a novel pathogen carbohydrate microarray of these LPSs (H. pylori LPS microarray) for interaction studies with proteins. LPSs were extracted from the cell surface of five H. pylori clinical isolates and one NCTC strain (26695) by phenol/water method, fractionated by size exclusion chromatography and analysed by gas chromatography coupled to mass spectrometry. The oligosaccharides released after mild acid treatment of the LPS were analysed by electrospray mass spectrometry. In addition to the conserved core oligosaccharide moieties, structural analyses revealed the presence of type-2 Lex and Ley antigens and N-acetyllactosamine (LacNAc) sequences, typically found in H. pylori strains. Also, the presence of O-6 linked glucose residues, particularly in LPSs from strains 2191 and NCTC 26695, pointed out to the expression of a 6-glucan. Other structural domains, namely ribans, composed of O-2 linked ribofuranose residues were observed in the LPS of most of H. pylori clinical isolates. For the LPS from strain 14382, large amounts of O-3 linked galactose units, pointing to the occurrence of a galactan, a domain recently identified in the LPS of another H. pylori strain. A particular feature to the LPSs from strains 2191 and CI-117 was the detection of large amounts of O-4 linked N-acetylglucosamine (GlcNAc) residues, suggesting the presence of chitin-like glycans, which to our knowledge have not been described for H. pylori strains. For the construction of the H. pylori LPS microarray, the structurally analysed LPSs, as well as LPS-derived oligosaccharide fractions, prepared as neoglycolipid (NGL) probes were noncovalently immobilized onto nitrocellulosecoated glass slides. These were printed together with NGLs of selected sequence defined oligosaccharides, bacterial LPSs and polysaccharides. The H. pylori LPS microarray was probed for recognition with carbohydratebinding proteins (CBPs) of known specificity. These included Le and blood group-related monoclonal antibodies (mAbs), plant lectins, a carbohydratebinding module (CBM) and the mammalian immune receptors DC-SIGN and Dectin-1. The analysis of these CBPs provided new information that complemented the structural analyses and was valuable in the quality control of the constructed microarray. Microarray analysis revealed the occurrence of type-2 Lex and Ley, but not type-1 Lea or Leb antigens, supporting the results obtained in the structural analysis. Furthermore, the H. pylori LPSs were recognised by DC-SIGN, a mammalian lectin known to interact with this bacterium through fucosylated Le epitopes expressed in its LPSs. The -fucose-specific lectin UEA-I, showed restricted binding to probes containing type-2 blood group H sequence and to the LPSs from strains CI-117 and 14382. The presence of H-type-2, as well Htype- 1 in the LPSs from these strains, was confirmed using specific mAbs. Although H-type-1 determinant has been reported for H. pylori LPSs, this is the first report of the presence of H-type-2 determinant. Microarray analysis also revealed that plant lectins known to bind 4-linked GlcNAc chitin oligosaccharide sequences bound H. pylori LPSs. STL, which exhibited restricted and strong binding to 4GlcNAc tri- and pentasaccharides, differentially recognised the LPS from the strain CI-117. The chitin sequences recognised in the LPS could be internal, as no binding was detected to this LPS with WGA, known to be specific for nonreducing terminal of 4GlcNAc sequence. Analyses of the H. pylori LPSs by SDS-PAGE and Western blot with STL provided further evidence for the presence of these novel domains in the O-chain region of this LPS. H. pylori LPS microarray was also applied to analysis of two human sera. The first was from a case infected with H. pylori (H. pylori+ CI-5) and the second was from a non-infected control.The analysis revealed a higher IgG-reactivity towards H. pylori LPSs in the H. pylori+ serum, than the control serum. A specific IgG response was observed to the LPS isolated from the CI-5 strain, which caused the infection. The present thesis has contributed to extension of current knowledge on chemical structures of LPS from H. pylori clinical isolates. Furthermore, the H. pylori LPS microarray constructed enabled the study of interactions with host proteins and showed promise as a tool in serological studies of H. pyloriinfected individuals. Thus, it is anticipated that the use of these complementary approaches may contribute to a better understanding of the molecular complexity of the LPSs and their role in pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell cycle and differentiation are two highly coordinated processes during organ development. Recent studies have demonstrated that core cell cycle regulators also play cell cycle-independent functions in post-mitotic neurons, and are essential for the maintenance of neuronal homeostasis. CDC25 phosphatases are well-established CDK activators and their activity is mainly associated to proliferating tissues. The expression and activity of mammalian CDC25s has been reported in adult brains. However, their physiological relevance and the potential substrates in a non-proliferative context have never been addressed. string (stg) encodes the Drosophila CDC25 homolog. Previous studies from our group showed that stg is expressed in photoreceptors (PRs) and in lamina neurons, which are two differentiated cell types that compose the fly visual system. The aims of this work are to uncover the function of stg and to identify its potential neuronal substrates, using the Drosophila visual system as a model. To gain insight into the function of stg in a non-dividing context we used the GAL4/UAS system to promote downregulation of stg in PR-neurons, through the use of an RNAi transgene. The defects caused by stg loss-of-function were evaluated in the developing eye imaginal disc by immunofluorescence, and during adult stages by scanning electron microscopy. This genetic approach was combined with a specific proteomic method, two-dimensional difference gel electrophoresis (2D-DIGE), to identify the potential substrates in PR-cells. Our results showed that stg downregulation in PRs affects the well-patterned retina organization, inducing the loss of apical maintenance of PR-nuclei on the eye disc, and ommatidia disorganization. We also detected an abnormal accumulation of cytoskeletal proteins and a disruption of the axon structure. As a consequence, the projection of PR-axons into the lamina and medulla neuropils of the optic lobe was impaired. Upon stg downregulation, we also detected that PR-cells accumulate Cyclin B. Although the rough eye phenotype observed upon stg downregulation suggests neurodegeneration, we did not detect neuronal death during larval stages, suggesting that it likely occurs during pupal stages or during adulthood. By 2D-DIGE, we identified seven proteins which were differentially expressed upon stg downregulation, and are potential neuronal substrates of Stg. Altogether, our observations suggest that Stg phosphatase plays an essential role in the Drosophila visual system neurons, regulating several cell components and processes in order to ensure their homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A importância médica do sangue associada ao risco de doenças infeciosas levou a um melhoramento das técnicas de rastreio de patogénicos no sangue doado. No entanto, devido aos períodos de "janela", durante o qual os agentes infeciosos não podem ser detetados, a desinfeção de sangue e seus derivados assume uma importância vital. Considerando que as técnicas convencionais de desinfeção (tratamento com solvente-detergente ou irradiação com UV ou radiação gama) pode ser empregue em concentrados de plasma ou de proteínas, o efeito colateral associado aos respetivos tratamentos não permite a sua utilização em frações celulares. Consequentemente, é necessário o desenvolvimento de uma nova alternativa eficaz para inativar microrganismos em sangue. Uma boa estratégia que merece ser considerada baseia-se na terapia fotodinâmica antimicrobiana (aPDT). aPDT envolve a interação entre a luz e um fotossensibilizador (PS) na presença de oxigénio molecular. Esta interação produz espécies reativas de oxigénio (ROS), que causam danos oxidativos às moléculas microbianas necessárias à sobrevivência do microrganismo. Em alguns países, esta metodologia já está aprovada para descontaminação de plasma, utilizando azul de metileno ou psoraleno como PSs. O objetivo deste estudo foi avaliar a adequação de de estrutura do tipo ftalocianina (Pc) e porfirina (Por) para desinfeção fotodinâmica de hemoderivados. Plasma e sangue total foram infetados com 108 unidades formadoras de colónias (CFU) / mL de Escherichia coli e após incubação com os derivados Pc e Por em estudo, expostos respetivamente a luz vermelha ou a luz branca com uma irradiância de 150 W/m2durante 270 min. As concentrações de E. coli viáveis foram determinadas a 0, 30, 60, 90, 180 e 270 min e comparadas com as obtidas nos controlos claro (amostras irradiadas na ausência de PS) e controlos escuro (amostras incubadas com PS mas não irradiadas). O efeito do tratamento aPDT nas células do sangue (glóbulos vermelhos e brancos) também foi avaliado. Os resultados obtidos mostram que, em todos os componentes do sangue, a Por em estudo é mais eficaz na inativação de E. coli que o derivado Pc. Após o tratamento aPDT, o número de células vermelhas e brancas no sangue é semelhante aos valores observados nas amostras de controlo. A eficiente inativação de células de E. coli e a ausência de efeito sobre as células de sangue transformam os derivados porfirínicos e ftalocianinas potenciais candidatos a serem utilizados com fotossensibilizadores na desinfeção fotodinâmica de produtos derivados do sangue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diplodia corticola is regarded as the most virulent fungus involved in cork oak decline, being able to infect not only Quercus species (mainly Q. suber and Q. ilex), but also grapevines (Vitis vinifera) and eucalypts (Eucalyptus sp.). This endophytic fungus is also a pathogen whose virulence usually manifests with the onset of plant stress. Considering that the infection normally culminates in host death, there is a growing ecologic and socio-economic concern about D. corticola propagation. The molecular mechanisms of infection are hitherto largely unknown. Accordingly, the aim of this study was to unveil potential virulence effectors implicated in D. corticola infection. This knowledge is fundamental to outline the molecular framework that permits the fungal invasion and proliferation in plant hosts, causing disease. Since the effectors deployed are mostly proteins, we adopted a proteomic approach. We performed in planta pathogenicity tests to select two D. corticola strains with distinct virulence degrees for our studies. Like other filamentous fungi D. corticola secretes protein at low concentrations in vitro in the presence of high levels of polysaccharides, two characteristics that hamper the fungal secretome analysis. Therefore, we first compared several methods of extracellular protein extraction to assess their performance and compatibility with 1D and 2D electrophoretic separation. TCA-Acetone and TCA-phenol protein precipitation were the most efficient methods and the former was adopted for further studies. The proteins were extracted and separated by 2D-PAGE, proteins were digested with trypsin and the resulting peptides were further analysed by MS/MS. Their identification was performed by de novo sequencing and/or MASCOT search. We were able to identify 80 extracellular and 162 intracellular proteins, a milestone for the Botryosphaeriaceae family that contains only one member with the proteome characterized. We also performed an extensive comparative 2D gel analysis to highlight the differentially expressed proteins during the host mimicry. Moreover, we compared the protein profiles of the two strains with different degrees of virulence. In short, we characterized for the first time the secretome and proteome of D. corticola. The obtained results contribute to the elucidation of some aspects of the biology of the fungus. The avirulent strain contains an assortment of proteins that facilitate the adaptation to diverse substrates and the identified proteins suggest that the fungus degrades the host tissues through Fenton reactions. On the other hand, the virulent strain seems to have adapted its secretome to the host characteristics. Furthermore, the results indicate that this strain metabolizes aminobutyric acid, a molecule that might be the triggering factor of the transition from a latent to a pathogenic state. Lastly, the secretome includes potential pathogenicity effectors, such as deuterolysin (peptidase M35) and cerato-platanin, proteins that might play an active role in the phytopathogenic lifestyle of the fungus. Overall, our results suggest that D. corticola has a hemibiotrophic lifestyle, switching from a biotrophic to a necrotrophic interaction after plant physiologic disturbances.This understanding is essential for further development of effective plant protection measures.