19 resultados para BIOLOGIA E FISIOLOGIA DOS MICROORGANISMOS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to analyse the Brazilian savanna forest from a Legal Reserve (LR) area from a perspective of conservation, reservoir of organic carbon and medicinal biomass for a prospective use of native medicinal plants. An ethnobotanical and ethnopharmacological survey was carried out close to a community settled in the rural area in the south of Tocantins, being selected 9 of the most cited species (cajuí- Anacardium othonianum; inharé-Brosimum gaudichaudii; jatobá-Hymenaeae courbaril; jenipapo-Genipa americana, aroeira-Myracrodruon urundeuva; negramina-Siparuna guianensis; barbatimão- Stryphnodendron obovatum; assa peixe-Vernonia brasiliana, embaúba-Cecropia pachystachya). Crude foliar extracts were subjected to a preliminary phytochemical prospection and triage of secondary metabolites with antimicrobial activity of potential interest in health and familiar agriculture. Phenolic compounds, terpenes and flavonoids were detected in the extracts of most species, which suggests the presence of antimicrobial, antioxidant and anti-insect activities. It was evident the need to better know the LR as a reservoir of medicinal biomass in an area under ecological tension where 35% (610ha) of the property is LR and should be protected by law. Therefore, a forest inventory of live woody species was performed using the allometric or indirect method. This identified a rare remnant of Semidecidual Seasonal Forest amidst the largest world savannah, the Cerrado biome. An analysis of the forest average productivity per basal area (m².ha), aerial live biomass (ton.ha-1) and carbon stock was carried out. The forest fragment was considered relatively rich in species and diversity, although showing signs of disturbance and dominance by a few species. Its horizontal structure suggests biotic regeneration conditions. It is an important reservoir of medicinal plants. Of the families (57.5%) presenting medicinal species, 19 from a total of 33 are represented in the area and contain 44% (27) of the total species (61) and 63% (432) of the total individuals catalogued. Medicinal species have ecological importance for the equilibrium of the local flora and represent 80% of the 10 species with higher Importance Value Index (IVI): Tetragastris altissima, Chrysophyllum marginatum, Oenocarpus distichus, Sclerolobium paniculatum, Simarouba versicolor, Alibertia macrophylla, Siparuna guianensis, Maprounea guianensis, Licania parvifolia e Physocalymma scaberrimum. Medicinal productivity was high for this type of phytophysionomy: 183,2 ton. ha-1 of biomass and 91,51 ton. ha-1 of carbon representing 66% of the total biomass and carbon of this Cerrado forest. From this stage S. guianensis (Siparunaceae) was selected for performing bioassays in order to verify its biological activity against microorganisms of health and agricultural relevance. This is a native aromatic medicinal plant recommended as priority for conservation, with local popular medicinal validation and availability of medicinal feedstock (3300 Kg.ha-1), with the foliar fraction giving 38Kg/ha of crude extract and 5L/ha of essential oil. Foliar crude extracts and essential oil were obtained and tested in vitro using a disk diffusion bioassay. Different concentrations of these natural products were tested against gram-positive bacteria (Staphylococcus aureus ATCC 29213), gram-negative bacteria (Escherichia coli ATCC 25922 and ATCC 35218; Pseudomonas aeruginosa ATCC 10145) and fungi (Candida albicans ATCC 6258 e Fusarium oxysporum). The essential oil inhibited the growth of S. aureus in its crude concentration (380μg.mL-1), as well as diluted to half (190μg.mL-1) and a quarter strength (95μg.mL-1). It’s likely that such action is due to sesquiterpenes major components, such as bisabolol and bisabolene (10.35%), measured by gas chromatography (GC-MS, GC-FID). Extracts did not exhibit any antimicrobial activity against the microorganisms tested. The native medicinal plants prospective market is an alternative that favours the conservation of biodiversity while generating benefits for the development of sustainable family productive activities within local ecosystems instead of the current inappropriate uses. This strengthens conservation policies of Legal Reserve in rural settlements and is in agreement with public policy on global warming and climate changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salt marshes are highly productive intertidal habitats that serve as nursery grounds for many commercially and economically important species. Because of their location and physical and biological characteristics, salt marshes are considered to be particularly vulnerable to anthropogenic inputs of oil hydrocarbons. Sediment contamination with oil is especially dangerous for salt marsh vegetation, since low molecular weight aromatic hydrocarbons can affect plants at all stages of development. However, the use of vegetation for bioremediation (phytoremediation), by removal or sequestration of contaminants, has been intensively studied. Phytoremediation is an efficient, inexpensive and environmental friendly approach for the removal of aromatic hydrocarbons, through direct incorporation by the plant and by the intervention of degrading microbial populations in the rhizosphere (microbe-assisted phytoremediation). Rhizosphere microbial communities are enriched in important catabolic genotypes for degradation of oil hydrocarbons (OH) which may have a potential for detoxification of the sediment surrounding the roots. In addition, since rhizosphere bacterial populations may also internalize into plant tissues (endophytes), rhizocompetent AH degrading populations may be important for in planta AH degradation and detoxification. The present study involved field work and microcosms experiments aiming the characterization of relevant plant-microbe interactions in oilimpacted salt marshes and the understanding of the effect of rhizosphere and endosphere bacteria in the role of salt marsh plants as potential phytoremediation agents. In the field approach, molecular tools were used to assess how plant species- and OH pollution affect sediment bacterial composition [bulk sediment and sediment surrounding the roots (rhizosphere) of Halimione portulacoides and Sarcocornia perennis subsp. perennis] in a temperate estuary (Ria de Aveiro, Portugal) chronically exposed to OH pollution. In addition, the 16S rRNA gene sequences retrieved in this study were used to generate in silico metagenomes and to evaluate the distribution of potential bacterial traits in different microhabitats. Moreover, a combination of culture-dependent and -independent approaches was used to investigate the effect of oil hydrocarbons contamination on the structure and function of endophytic bacterial communities of salt marsh plants.Root systems of H. portulacoides and S. perennis subsp. perennis appear to be able to exert a strong influence on bacterial composition and in silico metagenome analysis showed enrichment of genes involved in the process of polycyclic aromatic hydrocarbon (PAH) degradation in the rhizosphere of halophyte plants. The culturable fraction of endophytic degraders was essentially closely related to known OH-degrading Pseudomonas species and endophytic communities revealed sitespecific effects related to the level of OH contamination in the sediment. In order to determine the effects of oil contamination on plant condition and on the responses in terms of structure and function of the bacterial community associated with plant roots (rhizosphere, endosphere), a microcosms approach was set up. The salt marsh plant Halimione portulacoides was inoculated with a previous isolated Pseudomonas sp. endophytic degrader and the 2-methylnaphthalene was used as model PAH contaminant. The results showed that H. portulacoides health and growth were not affected by the contamination with the tested concentration. Moreover, the decrease of 2-methylnaphthalene at the end of experiment, can suggest that H. portulacoides can be considered as a potential plant for future uses in phytoremedition approaches of contaminated salt marsh. The acceleration of hydrocarbon degradation by inoculation of the plants with the hydrocarbon-degrading Pseudomonas sp. could not, however, be demonstrated, although the effects of inoculation on the structure of the endophytic community observed at the end of the experiment indicate that the strain may be an efficient colonizer of H. portulacoides roots. The results obtained in this work suggest that H. portulacoides tolerates moderate concentrations of 2-methylnaphthalene and can be regarded as a promising agent for phytoremedition approaches in salt marshes contaminated with oil hydrocarbons. Plant/microbe interactions may have an important role in the degradation process, as plants support a diverse endophytic bacterial community, enriched in genetic factors (genes and plasmids) for hydrocarbon degradation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last century mean global temperatures have been increasing. According to the predictions, the temperature change is expected to exceed 1.5ºC in this century and the warming is likely to continue. Freshwater ecosystems are among the most sensitive mainly due to changes in the hydrologic cycle and consequently changes in several physico-chemical parameters (e.g. pH, dissolved oxygen). Alterations in environmental parameters of freshwater systems are likely to affect distribution, morphology, physiology and richness of a wide range of species leading to important changes in ecosystem biodiversity and function. Moreover, they can also work as co-stressors in environments where organisms have already to cope with chemical contamination (such as pesticides), increasing the environmental risk due to potential interactions. Therefore, the objective of this work was to evaluate the effects of climate change related environmental parameters on the toxicity of pesticides to zebrafish embryos. The following environmental factors were studied: pH (3.0-12.0), dissolved oxygen level (0-8 mg/L) and UV radiation (0-500 mW/m2). The pesticides studied were the carbamate insecticide carbaryl and the benzimidazole fungicide carbendazim. Stressors were firstly tested separately in order to derive concentration- or intensity-response curves to further study the effects of binary combinations (environmental factors x pesticides) by applying mixture models. Characterization of zebrafish embryos response to environmental stress revealed that pH effects were fully established after 24 h of exposure and survival was only affected at pH values below 5 and above 10. Low oxygen levels also affected embryos development at concentrations below 4 mg/L (delay, heart rate decrease and edema), and at concentrations below 0.5 mg/L the survival was drastically reduced. Continuous exposure to UV radiation showed a strong time-dependent impact on embryos survival leading to 100% of mortality after 72 hours of exposure. The toxicity of pesticides carbaryl and carbendazim was characterized at several levels of biological organization including developmental, biochemical and behavioural allowing a mechanistic understanding of the effects and highlighting the usefulness of behavioural responses (locomotion) as a sensitive endpoint in ecotoxicology. Once the individual concentration response relationship of each stressor was established, a combined toxicity study was conducted to evaluate the effects of pH on the toxicity of carbaryl. We have shown that pH can modify the toxicity of the pesticide carbaryl. The conceptual model concentration addition allowed a precise prediction of the toxicity of the jointeffects of acid pH and carbaryl. Nevertheless, for alkaline condition both concepts failed in predicting the effects. Deviations to the model were however easy to explain as high pH values favour the hydrolysis of carbaryl with the consequent formation of the more toxic degradation product 1- naphtol. Although in the present study such explanatory process was easy to establish, for many other combinations the “interactive” nature is not so evident. In the context of the climate change few scenarios predict such increase in the pH of aquatic systems, however this was a first approach focused in the lethal effects only. In a second tier assessment effects at sublethal level would be sought and it is expectable that more subtle pH changes (more realistic in terms of climate changes scenarios) may have an effect at physiological and biochemical levels with possible long term consequences for the population fitness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The red deer (Cervus elaphus) is currently one of the most widespread and abundant wild ungulates in the Iberian Peninsula and is extremely important both ecologically, as a key species for the functioning of the ecosystems, and economically, as a major game species. In Iberia, red deer populations are subjected to different management systems that may affect the physical condition of the individuals, with further consequences for population dynamics. Studies investigating the effects of management practices and environmental conditions on the performance of red deer are still rare regarding Mediterranean ecosystems. Much of the knowledge concerning the ecology of red deer and the impact of management on its physical condition is based on studies conducted in northern and central regions of Europe, where climatological features and management practices differ from those observed in the Mediterranean areas of Iberia. Studies on a biogeographical scale can provide important insights into the relationships between species and a particular environment and contribute to the development of more targeted and appropriate management practices. The optimisation of sampling procedures and the fine-tuning of pre-existing analytical techniques are also fundamental to a more cost-effective monitoring and, therefore, are of enormous value to wildlife managers. In this context, the main aims of this thesis were: 1) to optimise the procedures used to assess the physical condition of red deer; and 2) to identify relevant management and environmental factors affecting the nutritional condition and stress physiology of red deer in the Mediterranean ecosystems of Iberia, as well as any potential interactions between those factors. Two studies with a methodological focus, presented in the first part of the thesis, demonstrated that the physical condition of red deer can be evaluated more simply, using more cost- and time-effective procedures than those traditionally used: i) it was shown that only one kidney and its associated fat is enough to assess nutritional condition in red deer; and ii) the feasibility of using near infrared spectroscopy to predict the concentrations of stress hormone metabolites was demonstrated using faeces of red deer for the first time. Subsequently, two large-scale observational studies, conducted in representative red deer populations found in Mediterranean Iberia, highlighted the importance of considering seasonal environmental variations and variables related to hunting management practices to better understand the nutritional and physiological ecology of red deer. High population densities had adverse effects on the nutritional condition of the deer and were associated with increased stress levels in natural populations without supplementary feeding. Massive hunting events involving the use of hounds were also identified as a potential source of chronic stress in red deer. The research presented in this thesis has clear implications regarding the management and monitoring of red deer populations in Mediterranean environments and is intended to help wildlife managers to implement more effective monitoring programmes and sustainable management practices.