138 resultados para atherosclerosis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have conducted an intervention trial to assess the effects of antioxidants and B-group vitamins on the susceptibility of low-density lipoprotein (LDL) to oxidation. A total of 509 men aged 30-49 from a local workforce were screened for total plasma homocysteine. The 132 selected (homocysteine concentration > or = 8.34 mumol/l) men were randomly assigned, using a factorial design, to one of four groups receiving supplementation with B group vitamins alone (1 mg folic acid, 7.2 mg pyridoxine, 0.02 mg cyanocobalamin), antioxidant vitamins (150 mg ascorbic acid, 67 mg alpha-tocopherol, 9 mg beta-carotene), B vitamins with antioxidant vitamins, or placebo. Intervention was double-blind. A total of 101 men completed the 8-week study. The lag time of LDL isolated ex vivo to oxidation (induced by 2 mumol/l cupric chloride) was increased in the two groups receiving antioxidants whether with (6.88 +/- 1.65 min) or without (8.51 +/- 1.77 min) B-vitamins, compared with placebo (-2.03 +/- 1.50) or B-vitamins alone (-3.34 +/- 1.08) (Mean +/- S.E., P <0.001). Antibodies to malondialdehyde (MDA) modified LDL were also measured, but there were no significant changes in titers of these antibodies in any group of subjects whether receiving antioxidants or not. Contrast analysis showed that there was no interaction between antioxidants and B-group vitamins. This study indicates that while B-group vitamins lower plasma homocysteine they do not have an antioxidant effect. Thus B-group vitamins and antioxidants appear to have separate, independent effects in reducing cardiovascular risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Connective tissue growth factor (CTGF/CCN2) is a 38-kDa secreted protein, a prototypic member of the CCN family, which is up-regulated in many diseases, including atherosclerosis, pulmonary fibrosis, and diabetic nephropathy. We previously showed that CTGF can cause actin disassembly with concurrent down-regulation of the small GTPase Rho A and proposed an integrated signaling network connecting focal adhesion dissolution and actin disassembly with cell polarization and migration. Here, we further delineate the role of CTGF in cell migration and actin disassembly in human mesangial cells, a primary target in the development of renal glomerulosclerosis. The functional response of mesangial cells to treatment with CTGF was associated with the phosphorylation of Akt/protein kinase B (PKB) and resultant phosphorylation of a number of Akt/PKB substrates. Two of these substrates were identified as FKHR and p27(Kip-1). CTGF stimulated the phosphorylation and cytoplasmic translocation of p27(Kip-1) on serine 10. Addition of the PI-3 kinase inhibitor LY294002 abrogated this response; moreover, addition of the Akt/PKB inhibitor interleukin (IL)-6-hydroxymethyl-chiro-inositol-2(R)-2-methyl-3-O-octadecylcarbonate prevented p27(Kip-1) phosphorylation in response to CTGF. Immunocytochemistry revealed that serine 10 phosphorylated p27(Kip-1) colocalized with the ends of actin filaments in cells treated with CTGF. Further investigation of other Akt/PKB sites on p27(Kip-1), revealed that phosphorylation on threonine 157 was necessary for CTGF mediated p27(Kip-1) cytoplasmic localization; mutation of the threonine 157 site prevented cytoplasmic localization, protected against actin disassembly and inhibited cell migration. CTGF also stimulated an increased association between Rho A and p27(Kip-1). Interestingly, this resulted in an increase in phosphorylation of LIM kinase and subsequent phosphorylation of cofilin, suggesting that CTGF mediated p27(Kip-1) activation results in uncoupling of the Rho A/LIM kinase/cofilin pathway. Confirming the central role of Akt/PKB, CTGF-stimulated actin depolymerization only in wild-type mouse embryonic fibroblasts (MEFs) compared to Akt-1/3 (PKB alpha/gamma) knockout MEFs. These data reveal important mechanistic insights into how CTGF may contribute to mesangial cell dysfunction in the diabetic milieu and sheds new light on the proposed role of p27(Kip-1) as a mediator of actin rearrangement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiovascular disease is the major cause of morbidity and mortality in patients with end-stage renal failure. Increased free radical production and antioxidant depletion may contribute to the greatly increased risk of atherosclerosis in these patients. Glutathione peroxidase (GPX) is an important antioxidant, the plasma form of which is synthesized mainly in the kidney (eGPX). The aim of this study was to assess the activity of eGPX in patients with end-stage renal failure on haemodialysis. Venous blood was collected from 87 haemodialysis patients immediately prior to and after dialysis and from 70 healthy controls. Serum eGPX activity was measured using hydrogen peroxide as substrate and immunoreactivity determined by ELISA. eGPX activity was significantly reduced in dialysis patients when compared to controls (106 +/- 2.7 and 281 +/- 3.6 U/l respectively, p <0.001). Following haemodialysis, eGPX activity rose significantly to 146 +/- 3.8 U/l, p <0.001, although remaining below control values (p <0.005). Immunoreactive eGPX, however, was similar in all groups (pre-dialysis 14.10 +/- 1.26 microg/ml, post-dialysis 14.58 +/- 1.35 microg/ml, controls 15.20 +/- 1.62 microg/ml, p = NS). A decrease was observed in the specific activity of eGPX in patients when compared to controls (8.81 +/- 1.14, 10.71 +/- 1.54 and 21.97 +/- 1.68 U/mg respectively, p <0.0001). eGPX activity is impaired in patients undergoing haemodialysis and so may contribute to atherogenesis in renal failure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This cross-sectional study assessed relationships between plasma homocysteine, 'thermolabile' methylenetetrahydrofolatereductase (MTHFR) genotype, B vitamin status and measures of renal function in elderly (70-89 years) and nonagenarian (90+ years) subjects, with the hypothesis that octo/nonagenarian subjects who remain healthy into old age as defined by 'Senieur' status might show reduced genetic or environmental risk factors usually associated with hyperhomocysteinaemia. Plasma homocysteine was 9.1 micromol/l (geometric mean [GM]) for all elderly subjects. Intriguingly, homocysteine was significantly lower in 90+ (GM; 8.2 micromol/l) compared to 70-89-year-old subjects (GM; 9.8 micromol/l) despite significantly lower glomerular filtration rate (GFR) and serum B12 in nonagenarian subjects and comparable MTHFR thermolabile (TT) genotype frequency, folate and B6 status to 70-89-year-olds. For all elderly subjects, the odds ratio and 95% confidence intervals for plasma homocysteine being in the highest versus lowest quartile was 4.27 (2.04-8.92) for age 90 years, 3.4 (1.5-7.8) for serum folate 10.7nmol/l, 3.0 (0.9-10.2) for creatinine >140 compared

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Oxidative stress is implicated in the pathogenesis of many human diseases including atherosclerosis. Human glutathione peroxidase 1 (hgpx1) participates in limiting cellular damage caused by oxidation. A characteristic polyalanine sequence polymorphism in exon 1 of hgpx1 produces three alleles with five, six or seven alanine (ALA) repeats in this sequence. The objective of this study was to determine whether hgpx1 genotype is associated with an altered risk of coronary artery disease (CAD).

Methods The frequency of the ALA6 allele was determined in 207 men with angiographic evidence of significant CAD compared to a control group (n = 146), by analysing the lengths of polymerase chain reaction fragments containing the ALA repeat polymorphism. Additional information was collected on severity of CAD, presence or absence of a prior acute myocardial infarction (AMI), smoking status, body mass index (BMI) and other clinical data.

Results There was a significant association between individuals with at least one ALA6 allele and an increased risk of CAD after adjustment for age, BMI and smoking status (odds ratio, 2.07, 95% confidence interval, 1.08-3.99, P = 0.029). However, there was no association between hgpx1 genotype and a previous history of AMI or hgpx1 genotype and severity of CAD.

Conclusion We conclude that individuals possessing one or two ALA6 alleles appear to be at a modest increased risk of CAD. This observation merits further investigation in other patient populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sustained activation of X-box-binding protein 1 (XBP1) results in endothelial cell (EC) apoptosis and atherosclerosis development. The present study provides evidence that XBP1 mRNA splicing triggered an autophagic response in ECs by inducing autophagic vesicle formation and markers of autophagy BECLIN-1 and microtubule-associated protein 1 light chain 3ß (LC3-ßII). Endostatin activated autophagic gene expression through XBP1 mRNA splicing in an inositol-requiring enzyme 1a (IRE1a)-dependent manner. Knockdown of XBP1 or IRE1a by shRNA in ECs ablated endostatin-induced autophagosome formation. Importantly, data from arterial vessels from XBP1 EC conditional knock-out (XBP1eko) mice demonstrated that XBP1 deficiency in ECs reduced the basal level of LC3ß expression and ablated response to endostatin. Chromatin immunoprecipitation assays further revealed that the spliced XBP1 isoform bound directly to the BECLIN-1 promoter at the region from nt -537 to -755. BECLIN-1 deficiency in ECs abolished the XBP1-induced autophagy response, whereas spliced XBP1 did not induce transcriptional activation of a truncated BECLIN-1 promoter. These results suggest that XBP1 mRNA splicing triggers an autophagic signal pathway through transcriptional regulation of BECLIN-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vascular diseases, including atherosclerosis, angioplasty-induced restenosis, vessel graft arteriosclerosis and hypertension-related stenosis, remain the most prevalent cause of death in the developed world. The aetiology of vascular diseases is multifactorial with both genetic and environmental factors. Recently, some of the most promising research identifies the epigenetic modification of the genome to play a major role in the disease development, linking the environmental insults with gene regulation. In this process, modification of DNA by methylation, and histone modification by acetylation, methylation, phosphorylation and/or SUMOylation are reported. Importantly, recent studies demonstrated that histone deacetylase (HDAC) enzymes are crucial in endothelial integrity, smooth muscle proliferation and in the formation of arteriosclerosis in animal models. The study of HDACs has shown remarkable specificity of HDAC family members in vascular cell growth/death that influences the disease process. Interestingly, the effects of HDACs on arteriosclerosis development in animal models have been observed after HDAC inhibition using specific inhibitors. This provides a new approach for the treatment of vascular disease using the agents that influence the epigenetic process in vascular cells. This review updates the rapid advances in epigenetics of vascular diseases focusing on the role of HDAC family in atherosclerosis. It will also discuss the underlying mechanisms of histone acetylation in vascular cells and highlight the therapeutic potential of such agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histone deacetylases (HDACs) are a family of enzymes that remove acetyl groups from lysine residues of histone proteins, a modification that results in epigenetic modulation of gene expression. Although originally shown to be involved in cancer and neurological disease, HDACs are also found to play crucial roles in arteriosclerosis. This review summarizes the effects of HDACs and HDAC inhibitors on proliferation, migration, and apoptosis of endothelial and smooth muscle cells. In addition, an updated discussion of HDACs' recently discovered effects on stem cell differentiation and atherosclerosis is provided. Overall, HDACs appear to be promising therapeutic targets for the treatment of arteriosclerosis and other cardiovascular diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Familial hypercholesterolemia (FH) is a common single gene disorder, which predisposes to coronary artery disease. In a previous study, we have shown that in patients with definite FH around 20% had no identifiable gene defect after screening the entire exon coding area of the low density lipoprotein receptor (LDLR) and testing for the common Apolipoprotein B (ApoB) R3500Q mutation. In this study, we have extended the screen to additional families and have included the non-coding intron splice regions of the gene. In families with definite FH (tendon xanthoma present, n = 68) the improved genetic screening protocol increased the detection rate of mutations to 87%. This high detection rate greatly enhances the potential value of this test as part of a clinical screening program for FH. In contrast, the use of a limited screen in patients with possible FH (n = 130) resulted in a detection rate of 26%, but this is still of significant benefit in diagnosis of this genetic condition. We have also shown that 14% of LDLR defects are due to splice site mutations and that the most frequent splice mutation in our series (c.1845 + 11 c > g) is expressed at the RNA level. In addition, DNA samples from the patients in whom no LDLR or ApoB gene mutations were found, were sequenced for the NARC-1 gene. No mutations were identified which suggests that the role of NARC-1 in causing FH is minor. In a small proportion of families (

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to develop a mutation screening protocol for familial hypercholesterolaemia (FH) patients and to assess genotype/phenotype effects in terms of pre-treatment lipid profiles and presentation of tendon xanthomata (TX). A total of 158 families with clinical definitions of possible (120) or definite (38) FH were studied using a tiered screening protocol. Mutations were identified in 52 families, 44 families showing 23 different LDLR gene defects and eight families showing the common Apo B100 gene defect R3500Q. LDLR defects were detected in various regions of the gene with 56% in the LDL binding domain (exons 2-6) and 37% in the EGF precursor homology domain (exons 7-14). The most common mutations were D461N(7), C210X(5), 932delA(5), and C163Y(4). Frameshift mutations accounted for 20% with nonsense 13%, mis-sense 35%, splice 3%, Apo B 13% and 2% large deletion, 13% of clinically definite FH remained undefined. In conclusion, DNA based diagnosis is possible in 79% (30/38) of clinically definite FH families and of the 120 possible FH families at the start of the screening program, 18% (22/120) now have defined mutations. Overall 60 families from the original 158 meet the clinical and/or genetic criteria for definite FH. Tendon xanthomata were present in only 58% (30/52) of genetically defined FH families, thus limiting its use as a strict diagnostic criteria. Families with low density lipoprotein receptor (LDLR) defects present with higher total and LDL cholesterol levels and a higher incidence of TX than do those with the common Apo B variant, and frameshift mutations appear to have the most severe presentation. Copyright (C) 1999 Elsevier Science Ireland Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Emerging science supports therapeutic roles of strawberries, blueberries, and cranberries in metabolic syndrome, a prediabetic state characterized by several cardiovascular risk factors. Interventional studies reported by our group and others have demonstrated the following effects: strawberries lowering total and LDL-cholesterol, but not triglycerides, and decreasing surrogate biomarkers of atherosclerosis (malondialdehyde and adhesion molecules); blueberries lowering systolic and diastolic blood pressure and lipid oxidation and improving insulin resistance; and low-calorie cranberry juice selectively decreasing biomarkers of lipid oxidation (oxidized LDL) and inflammation (adhesion molecules) in metabolic syndrome. Mechanistic studies further explain these observations as up-regulation of endothelial nitric oxide synthase activity, reduction in renal oxidative damage, and inhibition of the activity of carbohydrate digestive enzymes or angiotensin-converting enzyme by these berries. These findings need confirmation in future studies with a focus on the effects of strawberry, blueberry, or cranberry intervention in clinical biomarkers and molecular mechanisms underlying the metabolic syndrome.