170 resultados para Immunohistochemistry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute respiratory distress syndrome (ARDS) is a severe form of acute lung injury. It is a response to various diseases of variable etiology, including SARS-CoV infection. To date, a comprehensive study of the genomic physiopathology of ARDS (and SARS) is lacking, primarily due to the difficulty of finding suitable materials to study the disease process at a tissue level (instead of blood, sputa or swaps). Hereby we attempt to provide such study by analyzing autopsy lung samples from patient who died of SARS and showed different degrees of severity of the pulmonary involvement. We performed real-time quantitative PCR analysis of 107 genes with functional roles in inflammation, coagulation, fibrosis and apoptosis: some key genes were confirmed at a protein expression level by immunohistochemistry and correlated to the degree of morphological severity present in the individual samples analyzed. Significant expression levels were identified for ANPEP (a receptor for CoV), as well as inhibition of the STAT1 pathway, IFNs production and CXCL10 (a T-cell recruiter). Other genes unassociated to date with ARDS/SARS include C1Qb, C5R1, CASP3, CASP9, CD14, CD68, FGF7, HLA-DRA, ICF1, IRF3, MALAT-1, MSR1, NFIL3, SLPI, USP33, CLC, GBP1 and TACI. As a result, we proposed to therapeutically target some of these genes with compounds such as ANPEP inhibitors, SLPI and dexamethasone. Ultimately, this study may serve as a model for future, tissue-based analyses of fibroinflammatory conditions affecting the lung. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RUNX3 is believed to have tumour suppressor properties in several cancer types. Inactivation of RUNX3 has been shown to occur by methylation-induced transcriptional silencing and by mislocalization of the protein to the cytoplasm. The aim of this study was to examine the clinical significance of RUNX3 expression in a large series of colorectal cancers using immunohistochemistry and tissue arrays. With advancing tumour stage, expression of RUNX3 in the nucleus decreased, whereas expression restricted to the cytoplasmic compartment increased. Nuclear RUNX3 expression was associated with significantly better patient survival compared to tumours in which the expression of RUNX3 was restricted to the cytoplasm (P = 0.025). These results support a role for RUNX3 as a tumour suppressor in colorectal cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteomic and transcriptomic platforms both play important roles in cancer research, with differing strengths and limitations. Here, we describe a proteo-transcriptomic integrative strategy for discovering novel cancer biomarkers, combining the direct visualization of differentially expressed proteins with the high-throughput scale of gene expression profiling. Using breast cancer as a case example, we generated comprehensive two-dimensional electrophoresis (2DE)/mass spectrometry (MS) proteomic maps of cancer (MCF-7 and HCC-38) and control (CCD-1059Sk) cell lines, identifying 1724 expressed protein spots representing 484 different protein species. The differentially expressed cell-line proteins were then mapped to mRNA transcript databases of cancer cell lines and primary breast tumors to identify candidate biomarkers that were concordantly expressed at the gene expression level. Of the top nine selected biomarker candidates, we reidentified ANX1, a protein previously reported to be differentially expressed in breast cancers and normal tissues, and validated three other novel candidates, CRAB, 6PGL, and CAZ2, as differentially expressed proteins by immunohistochemistry on breast tissue microarrays. In total, close to half (4/9) of our protein biomarker candidates were successfully validated. Our study thus illustrates how the systematic integration of proteomic and transcriptomic data from both cell line and primary tissue samples can prove advantageous for accelerating cancer biomarker discovery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the molecular etiology and heterogeneity of disease has a direct effect on cancer therapeutics. To identify novel molecular changes associated with breast cancer progression, we conducted phosphoproteomics of the MCF10AT model comprising isogenic, ErbB2- and ErbB3-positive, xenograft-derived cell lines that mimic different stages of breast cancer. Using in vitro animal model and clinical breast samples, our study revealed a marked reduction of epidermal growth factor receptor (EGFR) expression with breast cancer progression. Such diminution of EGFR expression was associated with increased resistance to Gefitinib/Iressa in vitro. Fluorescence in situ hybridization showed that loss of EGFR gene copy number was one of the key mechanisms behind the low/null expression of EGFR in clinical breast tumors. Statistical analysis on the immunohistochemistry data of EGFR expression from 93 matched normal and breast tumor samples showed that (a) diminished EGFR expression could. be detected as early as in the preneoplastic lesion (ductal carcinoma in situ) and this culminated in invasive carcinomas; (b) EGFR expression levels could distinguish between normal tissue versus carcinoma in situ and invasive carcinoma with high statistical significance (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Loss of RUNX3 expression is suggested to be causally related to gastric cancer as 45% to 60% of gastric cancers do not express RUNX3 mainly due to hypermethylation of the RUNX3 promoter. Here, we examined for other defects in the properties of RUNX3 in gastric cancers that express RUNX3. Ninety-seven gastric cancer tumor specimens and 21 gastric cancer cell lines were examined by immunohistochemistry using novel anti-RUNX3 monoclonal antibodies. In normal gastric mucosa, RUNX3 was expressed most strongly in the nuclei of chief cells as well as in surface epithelial cells. In chief cells, a significant portion of the protein was also found in the cytoplasm. RUNX3 was not detectable in 43 of 97 (44%) cases of gastric cancers tested and a further 38% showed exclusive cytoplasmic localization, whereas only 18% showed nuclear localization. Evidence is presented suggesting that transforming growth factor-beta is an inducer of nuclear translocation of RUNX3, and RUNX3 in the cytoplasm of cancer cells is inactive as a tumor suppressor. RUNX3 was found to be inactive in 82% of gastric cancers through either gene silencing or protein mislocalization to the cytoplasm. In addition to the deregulation of mechanisms controlling gene expression, there would also seem to be at least one other mechanism controlling nuclear translocation of RUNX3 that is impaired frequently in gastric cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desmoplastic small round cell tumor (DSRCT) is a rare undifferentiated neoplasm. The prognosis is poor, even if therapy is instituted promptly. and thus it is important to differentiate it from other histologically and cytologically similar-looking malignancies of the young adult. We present a case of DSRCT in a 17-yr-old male with disseminated peritoneal disease and peritoneal effusion. The cytology sample showed a malignant small round cell tumor, the classical cytological features of DSRCT, and immunohistochemistry performed in the prepared cell block exhibited an antibody expression profile in keeping with DSRCT. Further material front the effusion was prepared for RNA extraction, following which a reverse-transcriptase polymerase chain reaction (RTPCR) and sequencing of the t(l l;22)(p13;q11 or q12) were carried out. The result showed the presence of the reciprocal translocation and thus confirmed the diagnosis of DSRCT. This case shows how molecular techniques (including sequencing) call be applied to cytology in clarifying and confirming certain difficult diagnosis of undifferentiated neoplasms, DSRCT in this particular case. Diagn. Cytopathol. 2003;29:341-343. (C) 2003 Wiley-Liss. Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amplification and/or overexpression of the HER-2/neu oncogene and its encoded receptor protein are increasingly used for prognostication and prediction of therapeutic response to Herceptin in breast cancer. However, large-scale examination of archival tumor blocks by immunohistochemistry (IHC) or fluorescence in situ hybridization (FISH) is prohibitively laborious and technically challenging. The tissue microarray (TMA) technique enables hundreds of tumors to be studied simultaneously in a single experiment. To evaluate the HER-2/neu status of a selection of the breast tumors in our tumor bank, we constructed a TMA from 97 breast tumors, with a single 0.6-mm core per specimen. HER-2/neu gene amplification by FISH was found in 20 of the 87 interpretable cases (23%): in 14 of 14 IHC 3+ cases (100%), 5 of 8 IHC 2+ cases (62.5%) and 1 of 65 IHC 0/1+ cases (1.5%). Three of the 67 cases with no evidence of HER-2/neu gene amplification by FISH were moderately positive (2+) by IHC. A close relationship was observed between these 2 assays as applied to the TMA (95.4% concordance: 95% CI, - 2.2% to 6.8%; P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: We previously found that cellular FLICE-inhibitory protein (c-FLIP), caspase 8, and tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) receptor 2 (DR5) are major regulators of cell viability and chemotherapy-induced apoptosis in colorectal cancer. In this study, we determined the prognostic significance of c-FLIP, caspase 8, TRAIL and DR5 expression in tissues from patients with stage II and III colorectal cancer.

Experimental Design: Tissue microarrays were constructed from matched normal and tumor tissue derived from patients (n = 253) enrolled in a phase III trial of adjuvant 5-fluorouracil–based chemotherapy versus postoperative observation alone. TRAIL, DR5, caspase 8, and c-FLIP expression levels were determined by immunohistochemistry.

Results: Colorectal tumors displayed significantly higher expression levels of c-FLIP (P < 0.001), caspase 8 (P = 0.01), and DR5 (P < 0.001), but lower levels of TRAIL (P < 0.001) compared with matched normal tissue. In univariate analysis, higher TRAIL expression in the tumor was associated with worse overall survival (P = 0.026), with a trend to decreased relapse-free survival (RFS; P = 0.06), and higher tumor c-FLIP expression was associated with a significantly decreased RFS (P = 0.015). Using multivariate predictive modeling for RFS in all patients and including all biomarkers, age, treatment, and stage, we found that the model was significant when the mean tumor c-FLIP expression score and disease stage were included (P < 0.001). As regards overall survival, the overall model was predictive when both TRAIL expression and disease stage were included (P < 0.001).

Conclusions: High c-FLIP and TRAIL expression may be independent adverse prognostic markers in stage II and III colorectal cancer and might identify patients most at risk of relapse.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evasion of apoptosis contributes to both tumourigenesis and drug resistance in non-small cell lung carcinoma (NSCLC). The pro-apoptotic BCL-2 family proteins BAX and BAK are critical regulators of mitochondrial apoptosis. New strategies for targeting NSCLC in a mitochondria-independent manner should bypass this common mechanism of apoptosis block. BRCA1 mutation frequency in lung cancer is low; however, decreased BRCA1 mRNA and protein expression levels have been reported in a significant proportion of lung adenocarcinomas. BRCA1 mutation/deficiency confers a defect in homologous recombination DNA repair that has been exploited by synthetic lethality through inhibition of PARP (PARPi) in breast and ovarian cells; however, it is not known whether this same synthetic lethal mechanism exists in NSCLC cells. Additionally, it is unknown whether the mitochondrial apoptotic pathway is required for BRCA1/PARPi-mediated synthetic lethality. Here we demonstrate that silencing of BRCA1 expression by RNA interference sensitizes NSCLC cells to PARP inhibition. Importantly, this sensitivity was not attenuated in cells harbouring mitochondrial apoptosis block induced by co-depletion of BAX and BAK. Furthermore, we demonstrate that BRCA1 inhibition cannot override platinum resistance, which is often mediated by loss of mitochondrial apoptosis signalling, but can still sensitize to PARP inhibition. Finally we demonstrate the existence of a BRCA1-deficient subgroup (11-19%) of NSCLC patients by analysing BRCA1 protein levels using immunohistochemistry in two independent primary NSCLC cohorts. Taken together, the existence of BRCA1-immunodeficient NSCLC suggests that this molecular subgroup could be effectively targeted by PARP inhibitors in the clinic and that PARP inhibitors could be used for the treatment of BRCA1-immunodeficient, platinum-resistant tumours. Copyright (C) 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: Objective Juvenile idiopathic arthritis (JIA) consists of a heterogeneous group of inflammatory disorders, within which there are a number of clinical subgroups. Diagnosis and assignment to a particular subgroup can be problematical and more concise methods of subgroup classification are required. This study of the synovial membrane characterises the immunohistochemical features in early untreated, newly diagnosed JIA and compares findings with disease subgroup at 2 years.

Methods: 42 patients with newly diagnosed untreated JIA underwent synovial biopsy before the administration of steroids or disease-modifying antirheumatic drugs. Patients were classified as either polyarticular, persistent oligoarticular or extended-to-be oligoarticular. The location and semiquantitative analysis of T-cell subsets, B cells, macrophages and blood vessels were determined using immunohistochemistry.

Results: Synovial hyperplasia varied significantly between the three groups
(p<0.0001). There was a significant difference in the CD3 T-cell population between the three groups (p=0.004) and between the extended-to-be and persistent group (p=0.032). CD4 expression was significantly higher in the poly and extended-to-be oligo groups (p=0.002), again the extended-to-be group had more CD4 T cells than the persistent group (p=0.008). B-cell infiltrates were more marked in the polyarticular group and were significantly higher in the extended-to-be group compared with the persistent group (p=0.005). Vascularisation was more pronounced in the polyarticular and extended-to-be oligoarticular groups, the extended-to-be group had significantly more vascularisation than the persistent group (p=0.0002).

Conclusions: There are significant differences in the histomorphometric features of synovial tissue between patient subgroups. Immunohistological examination of synovial membrane biopsies may provide further insight into early disease processes in JIA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: We evaluated the feasibility of biomarker development in the context of multicenter clinical trials.

Experimental Design: Formalin-fixed, paraffin-embedded (FFPE) tissue samples were collected from a prospective adjuvant colon cancer trial (PETACC3). DNA was isolated from tumor as well as normal tissue and used for analysis of microsatellite instability, KRAS and BRAF genotyping, UGT1A1 genotyping, and loss of heterozygosity of 18 q loci. Immunohistochemistry was used to test expression of TERT, SMAD4, p53, and TYMS. Messenger RNA was retrieved and tested for use in expression profiling experiments.

Results: Of the 3,278 patients entered in the study, FFPE blocks were obtained from 1,564 patients coming from 368 different centers in 31 countries. In over 95% of the samples, genomic DNA tests yielded a reliable result. Of the immmunohistochemical tests, p53 and SMAD4 staining did best with reliable results in over 85% of the cases. TERT was the most problematic test with 46% of failures, mostly due to insufficient tissue processing quality. Good quality mRNA was obtained, usable in expression profiling experiments.

Conclusions: Prospective clinical trials can be used as framework for biomarker development using routinely processed FFPE tissues. Our results support the notion that as a rule, translational studies based on FFPE should be included in prospective clinical trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue microarray (TMA) is a high throughput analysis tool to identify new diagnostic and prognostic markers in human cancers. However, standard automated method in tumour detection on both routine histochemical and immunohistochemistry (IHC) images is under developed. This paper presents a robust automated tumour cell segmentation model which can be applied to both routine histochemical tissue slides and IHC slides and deal with finer pixel-based segmentation in comparison with blob or area based segmentation by existing approaches. The presented technique greatly improves the process of TMA construction and plays an important role in automated IHC quantification in biomarker analysis where excluding stroma areas is critical. With the finest pixel-based evaluation (instead of area-based or object-based), the experimental results show that the proposed method is able to achieve 80% accuracy and 78% accuracy in two different types of pathological virtual slides, i.e., routine histochemical H&E and IHC images, respectively. The presented technique greatly reduces labor-intensive workloads for pathologists and highly speeds up the process of TMA construction and provides a possibility for fully automated IHC quantification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims/hypothesis
Methylglyoxal (MG) is an important precursor for AGEs. Normally, MG is detoxified by the glyoxalase (GLO) enzyme system (including component enzymes GLO1 and GLO2). Enhanced glycolytic metabolism in many cells during diabetes may overpower detoxification capacity and lead to AGE-related pathology. Using a transgenic rat model that overexpresses GLO1, we investigated if this enzyme can inhibit retinal AGE formation and prevent key lesions of diabetic retinopathy.
Methods
Transgenic rats were developed by overexpression of full length GLO1. Diabetes was induced in wild-type (WT) and GLO1 rats and the animals were killed after 12 or 24 weeks of hyperglycaemia. N e-(Carboxyethyl)lysine (CEL), N e-(carboxymethyl)lysine (CML) and MG-derived-hydroimidazalone-1 (MG-H1) were determined by immunohistochemistry and by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MSMS). Müller glia dysfunction was determined by glial fibrillary acidic protein (GFAP) immunoreactivity and by spatial localisation of the potassium channel Kir4.1. Acellular capillaries were quantified in retinal flat mounts.
Results
GLO1 overexpression prevented CEL and MG-H1 accumulation in the diabetic retina when compared with WT diabetic counterparts (p?<?0.01). Diabetes-related increases in Müller glial GFAP levels and loss of Kir4.1 at the vascular end-feet were significantly prevented by GLO1 overexpression (p?<?0.05) at both 12- and 24-week time points. GLO1 diabetic animals showed fewer acellular capillaries than WT diabetic animals (p?<?0.001) at 24 weeks’ diabetes.
Conclusions/interpretation
Detoxification of MG reduces AGE adduct accumulation, which, in turn, can prevent formation of key retinal neuroglial and vascular lesions as diabetes progresses. MG-derived AGEs play an important role in diabetic retinopathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:


Rationale Upregulation of glucocorticoid receptor ß (GRß) has been implicated in steroid resistance in severe asthma, although previous studies are conflicting. GRß has been proposed as a dominant negative isoform of glucocorticoid receptor a (GRa) but it has also been suggested that GRß can cause steroid resistance via reduced expression of histone deacetylase 2 (HDAC2), a key regulator of steroid responsiveness in the airway.


Objectives To examine GRß, GRa, HDAC1 and HDAC2 expression at transcript and protein levels in bronchial biopsies from a large series of patients with severe asthma, and to compare the findings with those of patients with mild to moderate asthma and healthy volunteers.


Methods Bronchoscopic study in two UK centres with real-time PCR and immunohistochemistry performed on biopsies, western blotting of bronchial epithelial cells and immunoprecipitation with anti-GRß antibody.


Measurements and main results Protein and mRNA expression for GRa and HDAC2 did not differ between groups. GRß mRNA was detected in only 13 of 73 samples (seven patients with severe asthma), however immunohistochemistry showed widespread epithelial staining in all groups. Western blotting of bronchial epithelial cells with GRß antibody detected an additional ‘cross-reacting’ protein, identified as clathrin. HDAC1 expression was increased in patients with severe asthma compared with healthy volunteers.


Conclusions GRß mRNA is expressed at low levels in a minority of patients with severe asthma. HDAC1 and HDAC2 expression was not downregulated in severe asthma. These data do not support upregulated GRß and resultant reduced HDAC expression as the principal mechanism of steroid resistance in severe asthma. Conflicting GRß literature may be explained in part by clathrin cross-reactivity with commercial antibodies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obese AT (adipose tissue) exhibits increased macrophage number. Pro-inflammatory CD16+ peripheral monocyte numbers are also reported to increase with obesity. The present study was undertaken to simultaneously investigate obesity-associated changes in CD16+ monocytes and ATMs (AT macrophages). In addition, a pilot randomized placebo controlled trial using the PPAR (peroxisome-proliferator-activated receptor) agonists, pioglitazone and fenofibrate was performed to determine their effects on CD14+/CD16+ monocytes, ATM and cardiometabolic and adipose dysfunction indices. Obese glucose-tolerant men (n=28) were randomized to placebo, pioglitazone (30 mg/day) and fenofibrate (160 mg/day) for 12 weeks. A blood sample was taken to assess levels of serum inflammatory markers and circulating CD14+/CD16+ monocyte levels via flow cytometry. A subcutaneous AT biopsy was performed to determine adipocyte cell surface and ATM number, the latter was determined via assessment of CD68 expression by IHC (immunohistochemistry) and real-time PCR. Subcutaneous AT mRNA expression of CEBPß (CCAAT enhancer-binding protein ß), SREBP1c (sterol-regulatory-element-binding protein 1c), PPAR?2, IRS-1 (insulin receptor substrate-1), GLUT4 (glucose transporter type 4) and TNFa (tumour necrosis factor a) were also assessed. Comparisons were made between obese and lean controls (n=16) at baseline, and pre- and post-PPAR agonist treatment. Obese individuals had significantly increased adipocyte cell surface, percentage CD14+/CD16+ monocyte numbers and ATM number (all P=0.0001). Additionally, serum TNF-a levels were significantly elevated (P=0.017) and adiponectin levels reduced (total: P=0.0001; high: P=0.022) with obesity. ATM number and percentage of CD14+/CD16+ monocytes correlated significantly (P=0.05). Pioglitazone improved adiponectin levels significantly (P=0.0001), and resulted in the further significant enlargement of adipocytes (P=0.05), without effect on the percentage CD14+/CD16+ or ATM number. Pioglitazone treatment also significantly increased subcutaneous AT expression of CEBPß mRNA. The finding that improvements in obesity-associated insulin resistance following pioglitazone were associated with increased adipocyte cell surface and systemic adiponectin levels, supports the centrality of AT to the cardiometabolic derangement underlying the development of T2D (Type 2 diabetes) and CVD (cardiovascular disease).