25 resultados para Cytosol


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidermal keratinocytes produce and secrete antimicrobial peptides (AMPs) that subsequently form a chemical shield on the skin surface. Cathelicidins are one family of AMPs in skin with various further immune functions. Consequently, dysfunction of these peptides has been implicated in the pathogenesis of inflammatory skin disease. In particular, the cathelicidin LL-37 is overexpressed in inflamed skin in psoriasis, binds to extracellular self-DNA released from dying cells and converts self-DNA in a potent stimulus for plasmacytoid dendritic cells (pDCs). Subsequently, pDCs secrete type I interferons and trigger an auto-inflammatory cascade. Paradoxically, therapies targeting the vitamin D pathway such as vitamin D analogues or UVB phototherapy ameliorate cutaneous inflammation in psoriasis but strongly induce cathelicidin expression in skin at the same time. Current evidence now suggests that self-DNA present in the cytosol of keratinocytes is also pro-inflammatory active and triggers IL-1β secretion in psoriatic lesions through the AIM2 inflammasome. This time, however, binding of LL-37 to self-DNA neutralizes DNA-mediated inflammation. Hence, cathelicidin LL-37 shows contrasting roles in skin inflammation in psoriasis and might serve as a target for novel therapies for this chronic skin disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proinflammatory cytokine interleukin-1β (IL-1β) plays a central role in the pathogenesis and the course of inflammatory skin diseases, including psoriasis. Posttranscriptional activation of IL-1β is mediated by inflammasomes; however, the mechanisms triggering IL-1β processing remain unknown. Recently, cytosolic DNA has been identified as a danger signal that activates inflammasomes containing the DNA sensor AIM2. In this study, we detected abundant cytosolic DNA and increased AIM2 expression in keratinocytes in psoriatic lesions but not in healthy skin. In cultured keratinocytes, interferon-γ induced AIM2, and cytosolic DNA triggered the release of IL-1β via the AIM2 inflammasome. Moreover, the antimicrobial cathelicidin peptide LL-37, which can interact with DNA in psoriatic skin, neutralized cytosolic DNA in keratinocytes and blocked AIM2 inflammasome activation. Together, these data suggest that cytosolic DNA is an important disease-associated molecular pattern that can trigger AIM2 inflammasome and IL-1β activation in psoriasis. Furthermore, cathelicidin LL-37 interfered with DNA-sensing inflammasomes, which thereby suggests an anti-inflammatory function for this peptide. Thus, our data reveal a link between the AIM2 inflammasome, cathelicidin LL-37, and autoinflammation in psoriasis, providing new potential targets for the treatment of this chronic skin disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fasciolosis is an important foodborne, zoonotic disease of livestock and humans, with global annual health and economic losses estimated at several billion US$. Fasciola hepatica is the major species in temperate regions, while F. gigantica dominates in the tropics. In the absence of commercially available vaccines to control fasciolosis, increasing reports of resistance to current chemotherapeutic strategies and the spread of fasciolosis into new areas, new functional genomics approaches are being used to identify potential new drug targets and vaccine candidates. The glutathione transferase (GST) superfamily is both a candidate drug and vaccine target. This study reports the identification of a putatively novel Sigma class GST, present in a water-soluble cytosol extract from the tropical liver fluke F. gigantica. The GST was cloned and expressed as an enzymically active recombinant protein. This GST shares a greater identity with the human schistosomiasis GST vaccine currently at Phase II clinical trials than previously discovered F. gigantica GSTs, stimulating interest in its immuno-protective properties. In addition, in silico analysis of the GST superfamily of both F. gigantica and F. hepatica has revealed an additional Mu class GST, Omega class GSTs, and for the first time, a Zeta class member.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macroautophagy, the process responsible for bulk sequestration and lysosomal degradation of cytoplasm, is often monitored by means of the autophagy-related marker protein LC3. This protein is linked to the phagophoric membrane by lipidation during the final steps of phagophore assembly, and it remains associated with autophagic organelles until it is degraded in the lysosomes. The transfer of LC3 from cytosol to membranes and organelles can be measured by immunoblotting or immunofluorescence microscopy, but these assays provide no information about functional macroautophagic activity, i.e., whether the phagophores are actually engaged in the sequestration of cytoplasmic cargo and enclosing this cargo into sealed autophagosomes. Moreover, accumulating evidence suggest that macroautophagy can proceed independently of LC3. There is therefore a need for alternative methods, preferably effective cargo sequestration assays, which can monitor actual macroautophagic activity. Here, we provide an overview of various approaches that have been used over the last four decades to measure macroautophagic sequestration activity in mammalian cells. Particular emphasis is given to the so-called "LDH sequestration assay", which measures the transfer of the autophagic cargo marker enzyme LDH (lactate dehydrogenase) from the cytosol to autophagic vacuoles. The LDH sequestration assay was originally developed to measure macroautophagic activity in primary rat hepatocytes. Subsequently, it has found use in several other cell types, and in this article we demonstrate a further validation and simplification of the method, and show that it is applicable to several cell lines that are commonly used to study autophagy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular stress responses often involve elevation of cytosolic calcium levels, and this has been suggested to stimulate autophagy. Here, however, we demonstrated that agents that alter intracellular calcium ion homeostasis and induce ER stress-the calcium ionophore A23187 and the sarco/endoplasmic reticulum Ca (2+)-ATPase inhibitor thapsigargin (TG)-potently inhibit autophagy. This anti-autophagic effect occurred under both nutrient-rich and amino acid starvation conditions, and was reflected by a strong reduction in autophagic degradation of long-lived proteins. Furthermore, we found that the calcium-modulating agents inhibited autophagosome biogenesis at a step after the acquisition of WIPI1, but prior to the closure of the autophagosome. The latter was evident from the virtually complete inability of A23187- or TG-treated cells to sequester cytosolic lactate dehydrogenase. Moreover, we observed a decrease in both the number and size of starvation-induced EGFP-LC3 puncta as well as reduced numbers of mRFP-LC3 puncta in a tandem fluorescent mRFP-EGFP-LC3 cell line. The anti-autophagic effect of A23187 and TG was independent of ER stress, as chemical or siRNA-mediated inhibition of the unfolded protein response did not alter the ability of the calcium modulators to block autophagy. Finally, and remarkably, we found that the anti-autophagic activity of the calcium modulators did not require sustained or bulk changes in cytosolic calcium levels. In conclusion, we propose that local perturbations in intracellular calcium levels can exert inhibitory effects on autophagy at the stage of autophagosome expansion and closure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is a prominent substrate for activated tyrosine kinase receptors that has been proposed to play a role in endosomal membrane trafficking. The protein contains a FYVE domain, which specifically binds to the lipid phosphatidylinositol (PI) 3-phosphate (PI 3-P). We show that this interaction is required both for correct localization of the protein to endosomes that only partially coincides with early endosomal autoantigen 1 and for efficient tyrosine phosphorylation of the protein in response to epidermal growth factor stimulation. Treatment with wortmannin reveals that Hrs phosphorylation also requires PI 3-kinase activity, which is necessary to generate the PI 3-P required for localization. We have used both hypertonic media and expression of a dominant-negative form of dynamin (K44A) to inhibit endocytosis; under which conditions, receptor stimulation fails to elicit phosphorylation of Hrs. Our results provide a clear example of the coupling of a signal transduction pathway to endocytosis, from which we propose that activated receptor (or associated factor) must be delivered to the appropriate endocytic compartment in order for Hrs phosphorylation to occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In mammalian cells, fusion between early endocytic vesicles has been shown to require the ubiquitous intracellular fusion factors N-ethylmaleimide-sensitive factor (NSF) and alpha-SNAP, as well as a factor specific for early endosomes, the small GTPase Rab5 [1-3]. We have previously demonstrated an additional requirement for phosphatidylinositol 3-kinase (PI 3-kinase) activity [4]. The membrane association of early endosomal antigen 1 (EEA1), a specific marker of early endosomes [5,6], has recently been shown to be similarly dependent on PI 3-kinase activity [7], and we therefore postulated that it might be involved in endosome fusion. Here, we present evidence that EEA1 has an important role in determining the efficiency of endosome fusion in vitro. Both the carboxy-terminal domain of EEA1 (residues 1098-1411) and specific antibodies against EEA1 inhibited endosome fusion when included in an in vitro assay. Furthermore, depletion of EEA1, both from the membrane fraction used in the assay by washing with salt and from the cytosol using an EEA1-specific antibody, resulted in inhibition of endosome fusion. The involvement of EEA1 in endosome fusion accounts for the sensitivity of the endosome fusion assay to inhibitors of PI 3-kinase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Like humans, mice exhibit polymorphism in the N-acetylation of aromatic amines, many of which are toxic and/or carcinogenic. Mice have three N-acetyltransferase (Nat) genes, Nat1, Nat2 and Nat3, and Nat2 is known to be polymorphic. There is a dramatic difference in the acetylation of NAT2 substrates by blood from fast (C57BL/6J) compared with slow acetylator (A/J) mice. However, the acetylation of these substrates by liver cytosols from the two strains is very similar. In order to determine whether the expression of the NAT2 protein corresponded with the activities measured, a polyclonal antipeptide antisera was raised against the C-terminal decapeptide of NAT2 and characterized using recombinant murine NAT2 antigen. Enzyme-linked immunosorbent assays (ELISAs) demonstrated that the anti-NAT2 antiserum bound in a concentration-dependent fashion to recombinant NAT2. Immunochemical analysis of mouse liver cytosols from C57BL/6J or A/J livers indicated that the level of NAT2 protein expressed in the two strains was similar. Immunohistochemical staining of C57BL/6J liver with anti-NAT2 antiserum showed that NAT2 was expressed in hepatocytes throughout the liver although the intensity of staining in the perivenous (centrilobular) region was higher than that in the periportal region. NAT2 was also detected in epithelial cells in the lung, kidney, bladder, small intestine and skin as well as in erythrocytes and lymphocytes in the spleen and hair follicles and sebaceous glands in the skin. Characterization of the distribution of NAT2 will be of value in elucidating the role of polymorphic N-acetylation in protecting the organism from environmental insults as well as in endogenous metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human pathogens enteropathogenic (EPEC) and enterohemorrhagic Escherichia coli and the related mouse pathogen Citrobacter rodentium subvert a variety of host cell signaling pathways via their plethora of type III secreted effectors, including triggering of an early apoptotic response. EPEC-infected cells do not develop late apoptotic symptoms, however. In this study we demonstrate that the NleH family effectors, homologs of the Shigella effector kinase OspG, blocks apoptosis. During EPEC infection, NleH effectors inhibit elevation of cytosolic Ca(2+) concentrations, nuclear condensation, caspase-3 activation, and membrane blebbing and promote cell survival. NleH1 alone is sufficient to prevent procaspase-3 cleavage induced by the proapoptotic compounds staurosporine, brefeldin A, and tunicamycin. Using C. rodentium, we found that NleH inhibits procaspase-3 cleavage at the bacterial attachment sites in vivo. A yeast two-hybrid screen identified the endoplasmic reticulum six-transmembrane protein Bax inhibitor-1 (BI-1) as an NleH-interacting partner. We mapped the NleH-binding site to the N-terminal 40 amino acids of BI-1. Knockdown of BI-1 resulted in the loss of NleH's antiapoptotic activity. These results indicate that NleH effectors are inhibitors of apoptosis that may act through BI-1 to carry out their cytoprotective function.