290 resultados para Acute hemorrhagic gastroenteritis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT center dot The cytotoxic effects of 6-mercaptopurine (6-MP) were found to be due to drug-derived intracellular metabolites (mainly 6-thioguanine nucleotides and to some extent 6-methylmercaptopurine nucleotides) rather than the drug itself. center dot Current empirical dosing methods for oral 6-MP result in highly variable drug and metabolite concentrations and hence variability in treatment outcome. WHAT THIS STUDY ADDS center dot The first population pharmacokinetic model has been developed for 6-MP active metabolites in paediatric patients with acute lymphoblastic leukaemia and the potential demographic and genetically controlled factors that could lead to interpatient pharmacokinetic variability among this population have been assessed. center dot The model shows a large reduction in interindividual variability of pharmacokinetic parameters when body surface area and thiopurine methyltransferase polymorphism are incorporated into the model as covariates. center dot The developed model offers a more rational dosing approach for 6-MP than the traditional empirical method (based on body surface area) through combining it with pharmacogenetically guided dosing based on thiopurine methyltransferase genotype. To investigate the population pharmacokinetics of 6-mercaptopurine (6-MP) active metabolites in paediatric patients with acute lymphoblastic leukaemia (ALL) and examine the effects of various genetic polymorphisms on the disposition of these metabolites. Data were collected prospectively from 19 paediatric patients with ALL (n = 75 samples, 150 concentrations) who received 6-MP maintenance chemotherapy (titrated to a target dose of 75 mg m(-2) day(-1)). All patients were genotyped for polymorphisms in three enzymes involved in 6-MP metabolism. Population pharmacokinetic analysis was performed with the nonlinear mixed effects modelling program (nonmem) to determine the population mean parameter estimate of clearance for the active metabolites. The developed model revealed considerable interindividual variability (IIV) in the clearance of 6-MP active metabolites [6-thioguanine nucleotides (6-TGNs) and 6-methylmercaptopurine nucleotides (6-mMPNs)]. Body surface area explained a significant part of 6-TGNs clearance IIV when incorporated in the model (IIV reduced from 69.9 to 29.3%). The most influential covariate examined, however, was thiopurine methyltransferase (TPMT) genotype, which resulted in the greatest reduction in the model's objective function (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/Apo-2L) has emerged as a promising anticancer agent. However, resistance to TRAIL is likely to be a major problem, and sensitization of cancer cells to TRAIL may therefore be an important anticancer strategy. In this study, we examined the effect of the epidermal growth factor receptor (EGFR)tyrosine kinase inhibitor (TKI) gefitinib and a human epidermal receptor 2 (HER2)-TKI (M578440) on the sensitivity of human colorectal cancer (CRC) cell lines to recombinant human TRAIL (rhTRAIL). A synergistic interaction between rhTRAIL and gefitinib and rhTRAIL and M578440 was observed in both rhTRAIL-sensitive and resistant CRC cells. This synergy correlated with an increase in EGFR and HER2 activation after rhTRAIL treatment. Furthermore, treatment of CRC cells with rhTRAIL resulted in activation of the Src family kinases (SFK). Importantly, we found that rhTRAIL treatment induced shedding of transforming growth factor-alpha (TGF-alpha) that was dependent on SFK activity and the protease ADAM-17. Moreover, this shedding of TGF-alpha was critical for rhTRAIL-induced activation of EGFR. In support of this, SFK inhibitors and small interfering RNAs targeting ADAM-17 and TGF-alpha also sensitized CRC cells to rhTRAIL-mediated apoptosis. Taken together, our findings indicate that both rhTRAIL-sensitive and resistant CRC cells respond to rhTRAIL treatment by activating an EGFR/HER2-mediated survival response and that these cells can be sensitized to rhTRAIL using EGFR/HER2-targeted therapies. Furthermore, this acute response to rhTRAIL is regulated by SFK-mediated and ADAM-17-mediated shedding of TGF-alpha, such that targeting SFKs or inhibiting ADAM-17, in combination with rhTRAIL, may enhance the response of CRC tumors to rhTRAIL. [Cancer Res 2008;68(20):8312-21]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most cytotoxic drugs kill cells by instigating the process of apoptosis and it has been suggested that apoptotic markers may provide an indication of tumour chemosensitivity. The aim of this study was to determine if such a relationship exists in acute myeloid leukaemia (AML). The levels of spontaneous apoptosis, bcl-2 and bax were evaluated in 56 newly diagnosed AML patients to determine if they correlated with a response to cytotoxic therapy. Spontaneous apoptosis was lower, but bcl-2, bax and the bcl-2/bax ratio were higher in AML compared with normal individuals. AML patients with high bax expression at diagnosis had significantly better prognosis for disease-free survival, event-free survival and overall survival (P = 0.016). In the standard risk group, high bax expression was in keeping with significantly improved survival. Multivariate analysis revealed bax to be an independent predictor of survival. There was a significant reduction in bcl-2 and bax expression when AML patients entered complete remission and also in relapsed AML patients who entered a second remission. This study suggests that bax is a useful prognostic indicator in AML and may assist with therapeutic decision-making for patients in the standard risk category.