51 resultados para nonmajor histocompatibility complex gene

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: We performed a genome-wide association study (GWAS) to identify common risk variants for schizophrenia. METHODS: The discovery scan included 1606 patients and 1794 controls from Ireland, using 6,212,339 directly genotyped or imputed single nucleotide polymorphisms (SNPs). A subset of this sample (270 cases and 860 controls) was subsequently included in the Psychiatric GWAS Consortium-schizophrenia GWAS meta-analysis. RESULTS: One hundred eight SNPs were taken forward for replication in an independent sample of 13,195 cases and 31,021 control subjects. The most significant associations in discovery, corrected for genomic inflation, were (rs204999, p combined = 1.34 × 10(-9) and in combined samples (rs2523722 p combined = 2.88 × 10(-16)) mapped to the major histocompatibility complex (MHC) region. We imputed classical human leukocyte antigen (HLA) alleles at the locus; the most significant finding was with HLA-C*01:02. This association was distinct from the top SNP signal. The HLA alleles DRB1*03:01 and B*08:01 were protective, replicating a previous study. CONCLUSIONS: This study provides further support for involvement of MHC class I molecules in schizophrenia. We found evidence of association with previously reported risk alleles at the TCF4, VRK2, and ZNF804A loci.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Converging evidence implicates immune abnormalities in schizophrenia (SCZ), and recent genome-wide association studies (GWAS) have identified immune-related single-nucleotide polymorphisms (SNPs) associated with SCZ. Using the conditional false discovery rate (FDR) approach, we evaluated pleiotropy in SNPs associated with SCZ (n=21 856) and multiple sclerosis (MS) (n=43 879), an inflammatory, demyelinating disease of the central nervous system. Because SCZ and bipolar disorder (BD) show substantial clinical and genetic overlap, we also investigated pleiotropy between BD (n=16 731) and MS. We found significant genetic overlap between SCZ and MS and identified 21 independent loci associated with SCZ, conditioned on association with MS. This enrichment was driven by the major histocompatibility complex (MHC). Importantly, we detected the involvement of the same human leukocyte antigen (HLA) alleles in both SCZ and MS, but with an opposite directionality of effect of associated HLA alleles (that is, MS risk alleles were associated with decreased SCZ risk). In contrast, we found no genetic overlap between BD and MS. Considered together, our findings demonstrate genetic pleiotropy between SCZ and MS and suggest that the MHC signals may differentiate SCZ from BD susceptibility.Molecular Psychiatry advance online publication, 28 January 2014; doi:10.1038/mp.2013.195.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. The success of transplantation is hampered by rejection of the graft by alloreactive T cells. Donor dendritic cells (DC) have been shown to be required for direct priming of immune responses to antigens from major histocompatibility complex-mismatched grafts. However, for immune responses to major histocompatibility complex-matched, minor histocompatibility (H) antigen mismatched grafts, the magnitude of the T-cell response to directly presented antigens is reduced, and the indirect pathway is more important. Therefore, we aimed to investigate the requirement for donor DC to directly present antigen from minor H antigen mismatched skin and hematopoietic grafts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barrett's esophagus is an increasingly common disease that is strongly associated with reflux of stomach acid and usually a hiatus hernia, and it strongly predisposes to esophageal adenocarcinoma (EAC), a tumor with a very poor prognosis. We report the first genome-wide association study on Barrett's esophagus, comprising 1,852 UK cases and 5,172 UK controls in the discovery stage and 5,986 cases and 12,825 controls in the replication stage. Variants at two loci were associated with disease risk: chromosome 6p21, rs9257809 (P(combined) = 4.09 × 10(-9); odds ratio (OR) = 1.21, 95% confidence interval (CI) =1.13-1.28), within the major histocompatibility complex locus, and chromosome 16q24, rs9936833 (P(combined) = 2.74 × 10(-10); OR = 1.14, 95% CI = 1.10-1.19), for which the closest protein-coding gene is FOXF1, which is implicated in esophageal development and structure. We found evidence that many common variants of small effect contribute to genetic susceptibility to Barrett's esophagus and that SNP alleles predisposing to obesity also increase risk for Barrett's esophagus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most tissues develop from stem cells and precursors that undergo differentiation as their proliferative potential decreases. Mature differentiated cells rarely proliferate and are replaced at the end of their life by new cells derived from precursors. Langerhans cells (LCs) of the epidermis, although of myeloid origin, were shown to renew in tissues independently from the bone marrow, suggesting the existence of a dermal or epidermal progenitor. We investigated the mechanisms involved in LC development and homeostasis. We observed that a single wave of LC precursors was recruited in the epidermis of mice around embryonic day 18 and acquired a dendritic morphology, major histocompatibility complex II, CD11c, and langerin expression immediately after birth. Langerin+ cells then undergo a massive burst of proliferation between postnatal day 2 (P2) and P7, expanding their numbers by 10–20-fold. After the first week of life, we observed low-level proliferation of langerin+ cells within the epidermis. However, in a mouse model of atopic dermatitis (AD), a keratinocyte signal triggered increased epidermal LC proliferation. Similar findings were observed in epidermis from human patients with AD. Therefore, proliferation of differentiated resident cells represents an alternative pathway for development in the newborn, homeostasis, and expansion in adults of selected myeloid cell populations such as LCs. This mechanism may be relevant in locations where leukocyte trafficking is limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecological speciation has been the subject of intense research in evolutionary biology but the genetic basis of the actual mechanism driving reproductive isolation has rarely been identified. The extreme polymorphism of the major histocompatibility complex (MHC), probably maintained by parasite-mediated selection, has been proposed as a potential driver of population divergence. We performed an integrative field and experimental study using three-spined stickleback river and lake ecotypes. We characterized their parasite load and variation at MHC class II loci. Fish from lakes and rivers harbor contrasting parasite communities and populations possess different MHC allele pools that could be the result of a combined action of genetic drift and parasite-mediated selection. We show that individual MHC class II diversity varies among populations and is lower in river ecotypes. Our results suggest the action of homogenizing selection within habitat type and diverging selection between habitat types. Finally, reproductive isolation was suggested by experimental evidence: in a flow channel design females preferred assortatively the odor of their sympatric male. This demonstrates the role of olfactory cues in maintaining reproductive isolation between diverging fish ecotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Schizophrenia Psychiatric Genome-Wide Association Study Consortium (PGC) highlighted 81 single-nucleotide polymorphisms (SNPs) with moderate evidence for association to schizophrenia. After follow-up in independent samples, seven loci attained genome-wide significance (GWS), but multi-locus tests suggested some SNPs that did not do so represented true associations. We tested 78 of the 81 SNPs in 2640 individuals with a clinical diagnosis of schizophrenia attending a clozapine clinic (CLOZUK), 2504 cases with a research diagnosis of bipolar disorder, and 2878 controls. In CLOZUK, we obtained significant replication to the PGC-associated allele for no fewer than 37 (47%) of the SNPs, including many prior GWS major histocompatibility complex (MHC) SNPs as well as 3/6 non-MHC SNPs for which we had data that were reported as GWS by the PGC. After combining the new schizophrenia data with those of the PGC, variants at three loci (ITIH3/4, CACNA1C and SDCCAG8) that had not previously been GWS in schizophrenia attained that level of support. In bipolar disorder, we also obtained significant evidence for association for 21% of the alleles that had been associated with schizophrenia in the PGC. Our study independently confirms association to three loci previously reported to be GWS in schizophrenia, and identifies the first GWS evidence in schizophrenia for a further three loci. Given the number of independent replications and the power of our sample, we estimate 98% (confidence interval (CI) 78-100%) of the original set of 78 SNPs represent true associations. We also provide strong evidence for overlap in genetic risk between schizophrenia and bipolar disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is one of the most prevalent malignancies worldwide. It consists of a group of tumor cells that have the ability to grow uncontrollably, overcome replicative senescence (tumor progression) and metastasize within the body. Metastases are processes that consist of an array of complex gene dysregulation events. Although these processes are still not fully understood, the dysregulation of a number of key proteins must take place if the tumor cells are to disseminate and metastasize. It is now widely accepted that future effective and innovative treatments of cancer metastasis will have to encompass all the major components of malignant transformation. For this reason, much research is now being carried out into the mechanisms that govern the malignant transformation processes. Recent research has identified key genes involved in the development of metastases, as well as their mechanisms of action. A detailed understanding of the encoded proteins and their interrelationship generates the possibility of developing novel therapeutic approaches. This review will focus on a select group of proteins, often deregulated in breast cancer metastasis, which have shown therapeutic promise, notably, EMT, E-cadherin, Osteopontin, PEA3, Transforming Growth Factor Beta (TGF-β) and Ran.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Ov/Br septin gene, which is also a fusion partner of MLL in acute myeloid leukaemia, is a member of a family of novel GTP binding proteins that have been implicated in cytokinesis and exocytosis. In this study, we describe the genomic and transcriptional organization of this gene, detailing seventeen exons distributed over 240 kb of sequence. Extensive database analyses identified orthologous rodent cDNAs that corresponded to new, unidentified 5' splice variants of the Ov/Br septin gene, increasing the total number of such variants to six. We report that splicing events, occurring at non-canonical sites within the body of the 3' terminal exon, remove either 1801 bp or 1849 bp of non-coding sequence and facilitate access to a secondary open reading frame of 44 amino acids maintained near the end of the 3' UTR. These events constitute a novel coding arrangement and represent the first report of such a design being implemented by a eukaryotic gene. The various Ov/Br proteins either differ minimally at their amino and carboxy termini or are equivalent to truncated versions of larger isoforms. Northern analysis with an Ov/Br septin 3' UTR probe reveals three transcripts of 4.4, 4 and 3 kb, the latter being restricted to a sub-set of the tissues tested. Investigation of the identified Ov/Br septin isoforms by RT-PCR confirms a complex transcriptional pattern, with several isoforms showing tissue-specific distribution. To date, none of the other human septins have demonstrated such transcriptional complexity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Genetic studies with Burkholderia cepacia complex isolates are hampered by the limited availability of cloning vectors and by the inherent resistance of these isolates to the most common antibiotics used for genetic selection. Also, some of the promoters widely employed for gene expression in Escherichia coli are inefficient in B. cepacia. In this study, we have utilized the backbone of the vector pME6000, a derivative of the pBBR1 plasmid that was originally isolated from Bordetella bronchiseptica, to construct a set of vectors useful for gene expression in B. cepacia. These vectors contain either the constitutive promoter of the S7 ribosomal protein gene from Burkholderia sp. strain LB400 or the arabinose-inducible P(BAD) promoter from E. coli. Promoter sequences were placed immediately upstream of multiple cloning sites in combination with the minimal sequence of pME6000 required for plasmid maintenance and mobilization. The functionality of both vectors was assessed by cloning the enhanced green fluorescent protein gene (e-gfp) and determining the levels of enhanced green fluorescent protein expression and fluorescence emission for a variety of clinical and environmental isolates of the B. cepacia complex. We also demonstrate that B. cepacia carrying these constructs can readily be detected intracellularly by fluorescence microscopy following the infection of Acanthamoeba polyphaga.