6 resultados para hybrid heuristic

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feature selection and feature weighting are useful techniques for improving the classification accuracy of K-nearest-neighbor (K-NN) rule. The term feature selection refers to algorithms that select the best subset of the input feature set. In feature weighting, each feature is multiplied by a weight value proportional to the ability of the feature to distinguish pattern classes. In this paper, a novel hybrid approach is proposed for simultaneous feature selection and feature weighting of K-NN rule based on Tabu Search (TS) heuristic. The proposed TS heuristic in combination with K-NN classifier is compared with several classifiers on various available data sets. The results have indicated a significant improvement in the performance in classification accuracy. The proposed TS heuristic is also compared with various feature selection algorithms. Experiments performed revealed that the proposed hybrid TS heuristic is superior to both simple TS and sequential search algorithms. We also present results for the classification of prostate cancer using multispectral images, an important problem in biomedicine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a random iterative graph based hyper-heuristic to produce a collection of heuristic sequences to construct solutions of different quality. These heuristic sequences can be seen as dynamic hybridisations of different graph colouring heuristics that construct solutions step by step. Based on these sequences, we statistically analyse the way in which graph colouring heuristics are automatically hybridised. This, to our knowledge, represents a new direction in hyper-heuristic research. It is observed that spending the search effort on hybridising Largest Weighted Degree with Saturation Degree at the early stage of solution construction tends to generate high quality solutions. Based on these observations, an iterative hybrid approach is developed to adaptively hybridise these two graph colouring heuristics at different stages of solution construction. The overall aim here is to automate the heuristic design process, which draws upon an emerging research theme on developing computer methods to design and adapt heuristics automatically. Experimental results on benchmark exam timetabling and graph colouring problems demonstrate the effectiveness and generality of this adaptive hybrid approach compared with previous methods on automatically generating and adapting heuristics. Indeed, we also show that the approach is competitive with the state of the art human produced methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nurse rostering is a difficult search problem with many constraints. In the literature, a number of approaches have been investigated including penalty function methods to tackle these constraints within genetic algorithm frameworks. In this paper, we investigate an extension of a previously proposed stochastic ranking method, which has demonstrated superior performance to other constraint handling techniques when tested against a set of constrained optimisation benchmark problems. An initial experiment on nurse rostering problems demonstrates that the stochastic ranking method is better in finding feasible solutions but fails to obtain good results with regard to the objective function. To improve the performance of the algorithm, we hybridise it with a recently proposed simulated annealing hyper-heuristic within a local search and genetic algorithm framework. The hybrid algorithm shows significant improvement over both the genetic algorithm with stochastic ranking and the simulated annealing hyper-heuristic alone. The hybrid algorithm also considerably outperforms the methods in the literature which have the previously best known results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Economic dispatch (ED) problems often exhibit non-linear, non-convex characteristics due to the valve point effects. Further, various constraints and factors, such as prohibited operation zones, ramp rate limits and security constraints imposed by the generating units, and power loss in transmission make it even more challenging to obtain the global optimum using conventional mathematical methods. Meta-heuristic approaches are capable of solving non-linear, non-continuous and non-convex problems effectively as they impose no requirements on the optimization problems. However, most methods reported so far mainly focus on a specific type of ED problems, such as static or dynamic ED problems. This paper proposes a hybrid harmony search with arithmetic crossover operation, namely ACHS, for solving five different types of ED problems, including static ED with valve point effects, ED with prohibited operating zones, ED considering multiple fuel cells, combined heat and power ED, and dynamic ED. In this proposed ACHS, the global best information and arithmetic crossover are used to update the newly generated solution and speed up the convergence, which contributes to the algorithm exploitation capability. To balance the exploitation and exploration capabilities, the opposition based learning (OBL) strategy is employed to enhance the diversity of solutions. Further, four commonly used crossover operators are also investigated, and the arithmetic crossover shows its efficiency than the others when they are incorporated into HS. To make a comprehensive study on its scalability, ACHS is first tested on a group of benchmark functions with a 100 dimensions and compared with several state-of-the-art methods. Then it is used to solve seven different ED cases and compared with the results reported in literatures. All the results confirm the superiority of the ACHS for different optimization problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generating timetables for an institution is a challenging and time consuming task due to different demands on the overall structure of the timetable. In this paper, a new hybrid method which is a combination of a great deluge and artificial bee colony algorithm (INMGD-ABC) is proposed to address the university timetabling problem. Artificial bee colony algorithm (ABC) is a population based method that has been introduced in recent years and has proven successful in solving various optimization problems effectively. However, as with many search based approaches, there exist weaknesses in the exploration and exploitation abilities which tend to induce slow convergence of the overall search process. Therefore, hybridization is proposed to compensate for the identified weaknesses of the ABC. Also, inspired from imperialist competitive algorithms, an assimilation policy is implemented in order to improve the global exploration ability of the ABC algorithm. In addition, Nelder–Mead simplex search method is incorporated within the great deluge algorithm (NMGD) with the aim of enhancing the exploitation ability of the hybrid method in fine-tuning the problem search region. The proposed method is tested on two differing benchmark datasets i.e. examination and course timetabling datasets. A statistical analysis t-test has been conducted and shows the performance of the proposed approach as significantly better than basic ABC algorithm. Finally, the experimental results are compared against state-of-the art methods in the literature, with results obtained that are competitive and in certain cases achieving some of the current best results to those in the literature.