36 resultados para clays
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
The determination of the earth pressure coefficient K 0 in a natural clay deposit is a problem of considerable significance in geotechnical engineering. While the methods for evaluation of K 0 are reliable for normally consolidated soils, significant difficulties still exist in evaluating K 0 in overconsolidated clays, given that it is influenced by the stress history of the material, together with the age, structure, mineralogical composition and depositional environment. Indeed, some of these factors are responsible for the soil becoming anisotropic. The existing framework for prediction of K 0 in overconsolidated soils does not account for any influences caused by anisotropy. The work reported in this paper evaluates the validity of a revised relationship between K 0oc and OCR (overconsolidation ratio) using data obtained from laboratory investigations. The tests were performed on reconstituted and undisturbed samples of Belfast Upper Boulder Clay, London Clay and Gault Clay. Tests were also performed on reconstituted samples of kaolin. The values of K 0oc were determined using various approaches, including on-sample measurements. The results have confirmed that reliable predictions of K 0oc can be made using the proposed relationship.
Resumo:
The sea-cliffs of the Isle of Wight were deposited during a period of overall sea-level rise starting in the Barremian (Lower Cretaceous) and continuing into the Aptian and Albian. They consist of fluvial, coastal and lagoonal sediments including greensands and clays. Numerous episodes of erosion, deposition and faunal colonization reflect condensation and abandonment of surfaces with firmgrounds and hardgrounds. This study focused mainly on shallow marine cycles where variations in clay mineralogy would not be expected, because overall system composition, sediment source, and thermal history are similar for all the samples in the studied section. Instead we found a wide variety of clay assemblages even in single samples within a 200 in interval.
Resumo:
Recently, considerable efforts have been made in the attempt to map quick clay areas using electrical resistivity measurements. However there is a lack of understanding regarding which soil parameters control the measured resistivity values. To address this issue, inverted resistivity values from 15 marine clay sites in Norway have been compared with basic geotechnical index properties. It was found that the resistivity value is strongly controlled by the salt content of the pore fluid. Resistivity decreases rapidly with increasing salt content. There is also a relatively clear trend of decreasing resistivity with increasing clay content and plasticity index. Resistivity values become very low (˜5 O·m) for high clay content (>50%), medium- to high-plasticity (Ip ˜ 20%) materials with salt content values greater than about 8 g/L (or corresponding remoulded shear strength values greater than 4 kPa). For the range of values studied, there is poor correlation between resistivity and bulk density and between resistivity and water content. The data studied suggest that the range of resistivity values corresponding to quick clay is 10 to 100 O·m, which is consistent with other published limits. A comparison is made between two-dimensional electrical resistivity tomography (ERT) and resistivity cone penetration test (RCPTU) data for two of the sites and the two sets of data show similar trends and values irrespective of scale effect.
Resumo:
Different classes of constitutive models have been proposed to capture the time-dependent behaviour of soft soil (creep, stress relaxation, rate dependency). This paper critically reviews many of the models developed based on understanding of the time dependent stress-strain-stress rate-strain rate behaviour of soils and viscoplasticity in terms of their strengths and weaknesses. Some discussion is also made on the numerical implementation aspects of these models. Typical findings from numerical analyses of geotechnical structures constructed on soft soils are also discussed. The general elastic viscoplastic (EVP) models can roughly be divided into two categories: models based on the concept of overstress and models based on non-stationary flow surface theory. Although general in structure, both categories have their own strengths and shortcomings. This review indicates that EVP analysis is yet to be vastly used by the geotechnical engineers, apparently due to the mathematical complication involved in the formulation of the constitutive models, unconvincing benefit in terms of the accuracy of performance prediction, requirement of additional soil parameter(s), difficulties in determining them, and the necessity of excessive computing resources and time. © 2013 Taylor & Francis.
Resumo:
Compacted clay fills are generally placed at the optimum value of water content and, immediately after placement, they are unsaturated. Wetting might subsequently occur due, for example, to rainfall infiltration, which can cause volumetric deformation of the fill (either swell or collapse) with associated loss of shear strength and structural integrity. If swelling takes place under partially restrained deformation, due for example to the presence of a buried rigid structure or a retaining wall, additional stresses will develop in the soil and these can be detrimental to the stability of walling elements and other building assets. Factors such as dry density, overburden pressure, compaction water content and type of clay are known to influence the development of stresses. This paper investigates these factors by means of an advanced stress path testing programme performed on four different clays with different mineralogy, index properties and geological histories. Specimens of kaolin clay, London Clay, Belfast Clay and Ampthill Clay were prepared at different initial states and subjected to ‘controlled’ wetting, whereby the suction was reduced gradually to zero under laterally restrainedconditions (i.e. K0 conditions). The results showed that the magnitude of the increase in horizontal stresses (and therefore the increase of K0) is influenced by the overburden pressure, compaction water content, dry density at the time of compaction and mineralogy.
Resumo:
The distribution coefficient, K-d, is often used to quantify heavy metal mobility in soils. Batch sorption or column infiltration tests may be used to measure K-d. The latter are closer to natural soil conditions, but are difficult to conduct in clays. This difficulty can be overcome by using a laboratory centrifuge. An acceleration of 2600 gravities was applied to columns of London Clay, an Eocene clay sub-stratum, and Cu, Ni, and Zn mobility was measured in centrifuge infiltration tests, both as single elements and in dual competition. Single-element K-d values were also obtained from batch sorption tests, and the results from the two techniques were compared. It was found that K-d values obtained by batch tests vary considerably depending on the metal concentration, while infiltration tests provided a single K-d value for each metal. This was typically in the lower end of the range of the batch test K-d values. For both tests, the order of mobility was Ni > Zn > Cu. Metals became more mobile in competition than when in single-element systems: Ni K-d decreased 3.3 times and Zn K-d 3.4 times when they competed with Cu, while Cu decreased only 1.2 times when in competition with either Ni or Zn. Our study showed that competitive sorption between metals increases the mobility of those metals less strongly bound more than it increases the mobility of more strongly bound metals.
Resumo:
A 37-m thick layer of stratified clay encountered during a site investigation at Swann's Bridge, near the sea-coast at Limavady, Northern Ireland, is one of the deepest and thickest layers of this type of material recorded in Ireland. A study of the relevant literature and stratigraphic evidence obtained from the site investigation showed that despite being close to the current shoreline, the clay was deposited in a fresh-water glacial lake formed approximately 13 000 BP. The 37-m layer of clay can be divided into two separate zones. The lower zone was deposited as a series of laminated layers of sand, silt, and clay, whereas the upper zone was deposited as a largely homogeneous mixture. A comprehensive series of tests was carried out on carefully selected samples from the full thickness of the deposit. The results obtained from these tests were complex and confusing, particularly the results of tests done on samples from the lower zone. The results of one-dimensional compression tests, unconsolidated undrained triaxial tests, and consolidated undrained triaxial compression tests showed that despite careful sampling, all of the specimens from the lower zone exhibited behaviour similar to that of reconstituted clays. It was immediately clear that the results needed explanation. This paper studies possible causes of the results from tests carried out on the lower Limavady clay. It suggests a possible mechanism based on anisotropic elasticity, yielding, and destructuring that provides an understanding of the observed behaviour.Key words: clay, laminations, disturbance, yielding, destructuring, reconstituted.
Resumo:
Index properties such as the liquid limit and plastic limit are widely used to evaluate certain geotechnical parameters of fine-grained soils. Measurement of the liquid limit is a mechanical process, and the possibility of errors occurring during measurement is not significant. However, this is not the case for plastic limit testing, despite the fact that the current method of measurement is embraced by many standards around the world. The method in question relies on a fairly crude procedure known widely as the ‘thread rolling' test, though it has been the subject of much criticism in recent years. It is essential that a new, more reliable method of measuring the plastic limit is developed using a mechanical process that is both consistent and easily reproducible. The work reported in this paper concerns the development of a new device to measure the plastic limit, based on the existing falling cone apparatus. The force required for the test is equivalent to the application of a 54 N fast-static load acting on the existing cone used in liquid limit measurements. The test is complete when the relevant water content of the soil specimen allows the cone to achieve a penetration of 20 mm. The new technique was used to measure the plastic limit of 16 different clays from around the world. The plastic limit measured using the new method identified reasonably well the water content at which the soil phase changes from the plastic to the semi-solid state. Further evaluation was undertaken by conducting plastic limit tests using the new method on selected samples and comparing the results with values reported by local site investigation laboratories. Again, reasonable agreement was found.
Resumo:
The research reported here is based on the standard laboratory experiments routinely performed in order to measure various geotechnical parameters. These experiments require consolidation of fine-grained samples in triaxial or stress path apparatus. The time required for the consolidation is dependent on the permeability of the soil and the length of the drainage path. The consolidation time is often of the order of several weeks in large clay-dominated samples. Long testing periods can be problematic, as they can delay decisions on design and construction methods. Acceleration of the consolidation process would require a reduction in effective drainage length and this is usually achieved by placing filter drains around the sample. The purpose of the research reported in this paper is to assess if these filter drains work effectively and, if not, to determine what modifications to the filter drains are needed. The findings have shown that use of a double filter reduces the consolidation time several fold.
Resumo:
The mechanism whereby the foundation loading is transmitted through stone the column (included in soft clay) has received less attention from researchers. This paper reports on some interesting findings obtained from a laboratory-based model study in respect of this issue. The stone column, included in the soft clay bed was subjected to foundation loading under drained conditions. The results show, probably for the first time, how the foundation loadings are transmitted through the column and indeed the existence of “negative skin friction” (a widely accepted phenomena in solid piles) in granular columns in soft clays.