10 resultados para Tokamak

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent R-matrix calculations of electron impact excitation rates in Ni XII are used to derive the emission line ratios R-1 = I(154.17 Angstrom)/I(152.15 Angstrom), R-2 = I(152.95 Angstrom)/I(152.15 Angstrom) and R-3 = 1(160.55 Angstrom)/I(152.15 Angstrom). This is the first time (to our knowledge) that theoretical emission line ratios have been calculated for this ion. The ratios are found to be insensitive to changes in the adopted electron density (N-e) when N-e greater than or equal to 5 x 10(11) cm(-3), typical of laboratory plasmas. However, they do vary with electron temperature (T-e), with for example R-1 and R-3 changing by factors of 1.3 and 1.8, respectively, between T-e = 10(5) and 10(6) K. A comparison of the theoretical line ratios with measurements from the Joint European Tents (JET) tokamak reveals very good agreement between theory and observation for R-1, with an average discrepancy of only 7%. Agreement between the calculated and experimental ratios for R-2 and R-3 is less satisfactory, with average differences of 30 and 33%, respectively. These probably arise from errors in the JET instrument calibration curve. However, the discrepancies are smaller than the uncertainties in the R-2 and R-3 measurements. Our results, in particular for R-1, provide experimental support for the accuracy of the Ni XIII line ratio calculations, and hence for the atomic data adopted in their derivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A curved crystal spectrometer in Johann configuration has been implemented on MAST to obtain values for electron temperature, ion temperature and toroidal velocity. The spectrometer is used to examine medium Z impurities in the soft x-ray region by utilising a Silicon (111) crystal, bent using a 4 pin bending jig, and a CCD detector (Deltat=8 ms). Helium-like Argon emissions from 3.94 to 4.00 Angstrom have been examined using a crystal radius of 859.77 mm. The Bragg angle and crystal radius can be adjusted with relative ease. The spectrometer can be scanned toroidally and poloidally to include a radial view which facilitates absolute velocity measurements by assuming radial velocity =0. Doppler shifts of 2.3x10(-5) Angstrom (1.8 kms(-1)) can be measured. The line of sight is shared with a neutral particle analyzer, which enables in situ ion temperature comparisons. Ray tracing has been used for the development of new imaging spectrometers, using spherical/toroidal crystals, planned to be implemented on MAST. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main populating and depopulating mechanisms of the excited energy levels of ions in plasmas with densities <1023-1024 m-3 are electron collisional excitation from the ion's ground state and radiative decay, respectively, with the majority of the electron population being in the ground state of the ionization stage. Electron collisional ionization is predominately expected to take place from one ground state to that of the next higher ionization stage. However, the question arises as to whether, in some cases, ionization can also affect the excited level populations. This would apply particularly to those cases involving transient events such as impurity influxes in a laboratory plasma. An analysis of the importance of ionization in populating the excited levels of ions in plasmas typical of those found in the edge of tokamaks is undertaken for the C IV and C V ionization stages. The emphasis is on those energy levels giving rise to transitions of most use for diagnostic purposes (n ≤ 5). Carbon is chosen since it is an important contaminant of JET plasmas; it was the dominant low Z impurity before the installation of the ITER-like wall and is still present in the plasma after its installation. Direct electron collisional ionization both from and to excited levels is considered. Distorted-wave flexible atomic code calculations are performed to generate the required ionization cross sections, due to a lack of atomic data in the literature. Employing these data, ionization from excited level populations is not found to be significant in comparison with radiative decay. However, for some energy levels, ionization terminating in the excited level has an effect in the steady-state of the order of the measurement errors (±10%). During transient events, ionization to excited levels will be of more importance and must be taken into account in the calculation of excited level populations. More accurate atomic data, including possible resonance contributions to the cross sections, would tend to increase further the importance of these effects. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New R-matrix calculations of electron impact excitation rates in Ca XV are used to derive theoretical electron density diagnostic emission line intensity ratios involving 2s(2)2p(2)- 2s2p(3) transitions, specifically R-1 = I(208.70 Angstrom)/I(200.98 Angstrom), R-2 = I(181.91 Angstrom)/I(200.98 Angstrom), and R-3 = I(215.38 Angstrom)/I(200.98 Angstrom), for a range of electron temperatures (T-e = 10(6.4)-10(6.8) K) and densities (Ne = 10(9)-10(13) cm(-3)) appropriate to solar coronal plasmas. Electron densities deduced from the observed values of R-1, R-2, and R-3 for several solar flares, measured from spectra obtained with the Naval Research Laboratory's S082A spectrograph on board Skylab, are found to be consistent. In addition, the derived electron densities are in excellent agreement with those determined from line ratios in Ca XVI, which is formed at a similar electron temperature to Ca XV. These results provide some experimental verification for the accuracy of the line ratio calculations, and hence the atomic data on which they are based. A set of eight theoretical Ca XV line ratios involving 2s(2)2p(2)-2s2p(3) transitions in the wavelength range similar to140-216 Angstrom are also found to be in good agreement with those measured from spectra of the TEXT tokamak plasma, for which the electron temperature and density have been independently determined. This provides additional support for the accuracy of the theoretical line ratios and atomic data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent R-matrix calculations of electron impact excitation rates for transitions among the 2s(2)2p(2), 2s2p(3) and 2p(4) levels of Fe XXI are used to derive theoretical electron density (N-e) sensitive emission-line ratios involving 2S2(2)p(2)-2s2p(3) transitions in the similar to 98-146 Angstrom wavelength range. A comparison of these with observations from the PLT tokamak plasma, for which the electron density has been independently determined, reveals generally very good agreement between theory and experiment, and in some instances removes discrepancies found previously. The observed Fe XXI ratios for a solar flare, obtained with the OSO-5 satellite, imply electron densities which are consistent, with discrepancies that do not exceed 0.2 dex. In addition, the derived values of N-e are similar to those estimated for the high-temperature regions of other solar flares. The good agreement between theory and observation, in particular for the tokamak spectra, provides experimental support for the accuracy of the present line-ratio calculations, and hence for the atomic data on which they are based.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inclusion of collisional rates for He-like Fe and Ca ions is discussed with reference to the analysis of solar flare Fe XXV and Ca XIX line emission, particularly from the Yohkoh Bragg Crystal Spectrometer (BCS). The new data are a slight improvement on calculations presently used in the BCS analysis software in that the discrepancy in the Fe XXV y and z line intensities (observed larger than predicted) is reduced. Values of electron temperature from satellite-to-resonance line ratios are slightly reduced (by up to 1 MK) for a given observed ratio. The new atomic data will be incorporated in the Yohkoh BCS databases. The data should also be of interest for the analysis of high-resolution, non-solar spectra expected from the Constellation-X and Astro-E space missions. A comparison is made of a tokamak S XV spectrum with a synthetic spectrum using atomic data in the existing software and the agreement is found to be good, so validating these data for particularly high-n satellite wavelengths close to the S XV resonance line. An error in a data file used for analyzing BCS Fe XXVI spectra is corrected, so permitting analysis of these spectra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the matter in the universe is in the few form of a plasma. Over the past years physicists have produced laboratory plasmas that can mimic those observed in astrophysics. The best known is probably the tokamak, which has similar physical conditions and plasma processes to those found in collisionally dominated solar and stellar transition regions and coronae. Spectroscopy of such laboratory plasmas, in, particular at, ultraviolet and X-ray wavelengths, has greatly aided our understanding of their astrophysical counterparts. More recently, experiments have been performed on the Z Machine at the Sandia National Laboratory in the USA with the aim of creating, for the first time, steady-state photoionization-dominated plasmas that recreate the conditions found in some accretion-powered X-ray sources, such as X-ray binaries. In the future, experiments are envisaged with laser-produced plasmas at AWE Aldermaston that may be able to mimic the steady-state conditions found in high-energy accretion-powered sources, including the central regions of active galaxies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports the progress made at JET-ILW on integrating the requirements of the reference ITER baseline scenario with normalized confinement factor of 1, at a normalized pressure of 1.8 together with partially detached divertor whilst maintaining these conditions over many energy confinement times. The 2.5 MA high triangularity ELMy H-modes are studied with two different divertor configurations with D-gas injection and nitrogen seeding. The power load reduction with N seeding is reported. The relationship between an increase in energy confinement and pedestal pressure with triangularity is investigated. The operational space of both plasma configurations is studied together with the ELM energy losses and stability of the pedestal of unseeded and seeded plasmas. The achievement of stationary plasma conditions over many energy confinement times is also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tungsten will be employed as a plasma facing material in the ITER fusion reactor under construction in Cadarache, France; therefore, there is a significant need for accurate electron-impact excitation and ionization data for the ions of tungsten. We report on the results of extensive calculations of ionization and excitation for W 3+ that are intended to provide the atomic data needed for the determination of impurity influx diagnostics of tungsten in several existing tokamak reactors. The electron-impact excitation rate coefficients for this study were determined using the relativistic R -matrix method. The contribution to direct electron-impact ionization was determined using the distorted-wave approximation, the accuracy of which was verified by an R -matrix with pseudo states calculation. Contributions to total ionization from excitation autoionization were also generated from the relativistic R -matrix method. These results were then employed to calculate values of ionization per emitted photon, or SXB ratios, for four carefully selected spectral lines; these data will allow the determination of impurity influx from tungsten facing surfaces. For the range of densities of importance in the edge region of a tokamak reactor, these SXB ratios are found to be nearly independent of electron density but vary significantly with electron temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present complete collisional-radiative modelling results for the soft x-ray emission lines of Fe16+ in the 15 Å–17 Å range. These lines have been the subject of much controversy in the astrophysical and laboratory plasma community. Radiative transition rates are generated from fully relativistic atomic structure calculations. Electron-impact excitation cross sections are determined using a fully relativistic R-matrix method employing 139 coupled atomic levels through n = 5. We find that, in all cases, using a simple ratio of the collisional rate coefficient times a radiative branching factor is not sufficient to model the widely used diagnostic line ratios. One has to include the effects of collisional-radiative cascades in a population model to achieve accurate line ratios. Our line ratio results agree well with several previous calculations and reasonably well with tokamak experimental measurements, assuming a Maxwellian electron-energy distribution. Our modelling results for four EBIT line ratios, assuming a narrow Gaussian electron-energy distribution, are in generally poor agreement with all four NIST measurements but are in better agreement with the two LLNL measurements. These results suggest the need for an investigation of the theoretical polarization calculations that are required to interpret the EBIT line ratio measurements.