18 resultados para Marina Colasanti

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data from a hierarchical study of four Zostera marina beds in Wales were used to identify the spatial scales of variation in epiphyte assemblages. There were significant within and among bed differences in assemblage structure. The differences in assemblage structure with spatial scale generally persisted when species identifications were aggregated into functional groups. There was also significant within and among bed variability in Zostera density and average length. Local variations in Zostera canopy variables at the quadrat scale (total leaf length, average leaf length and leaf density per quadrat) were not related to epiphyte species richness nor to the structure of the assemblage. In contrast, individual leaf length was significantly related to species richness in two of the beds and the structure of epiphyte assemblages was always related to individual leaf lengths. The absence of links between quadrat scale measurements of canopy variables and assemblage structure may reflect the high turnover of individual Zostera leaves. Experimental work is required to discriminate further between the potential causes of epiphyte assemblage variation within and between beds. No bed represented a refuge where a rare species was abundant. If a species was uncommon at the bed scale, it was also uncommon in beds where it occurred. The heterogeneous assemblages found in this study suggest that a precautionary approach to conservation is advisable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immune responses of invertebrate animals are mediated through innate mechanisms, among which production of antimicrobial peptides play an important role. Although evolutionary Polychaetes represent an interesting group closely related to a putative common ancestor of other coelomates, their immune mechanisms still remain scarcely investigated. Previously our group has identified arenicins - new antimicrobial peptides of the lugworm Arenicola marina, since then these peptides were thoroughly characterized in terms of their structure and inhibitory potential. In the present study we addressed the question of the physiological functions of arenicins in the lugworm body. Using molecular and immunocytochemical methods we demonstrated that arencins are expressed in the wide range of the lugworm tissues - coelomocytes, body wall, extravasal tissue and the gut. The expression of arenicins is constitutive and does not depend on stimulation of various infectious stimuli. Most intensively arenicins are produced by mature coelomocytes where they function as killing agents inside the phagolysosome. In the gut and the body wall epithelia arenicins are released from producing cells via secretion as they are found both inside the epithelial cells and in the contents of the cuticle. Collectively our study showed that arenicins are found in different body compartments responsible for providing a first line of defence against infections, which implies their important role as key components of both epithelial and systemic branches of host defence.