15 resultados para MOLECULAR ICE

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wideband far infrared (FIR) spectra of complex permittivity e(p) of ice are calculated in terms of a simple analytical theory based on the method of dipolar autocorrelation functions. The molecular model represents a revision of the model recently presented for liquid water in Adv. Chem. Phys. 127 (2003) 65. A composite two-fractional model is proposed. The model is characterised by three phenomenological potential wells corresponding to the three FIR bands observed in ice. The first fraction comprises dipoles reorienting in a rather narrow and deep hat-like well; these dipoles generate the librational band centred at the frequency approximate to 880 cm(-1). The second fraction comprises elastically interacting particles; they generate two nearby bands placed around frequency 200 cm(-1). For description of one of these bands the harmonic oscillator (HO) model is used, in which translational oscillations of two charged molecules along the H-bond are considered. The other band is produced by the H-bond stretch, which governs hindered rotation of a rigid dipole. Such a motion and its dielectric response are described in terms of a new cut parabolic (CP) model applicable for any vibration amplitude. The composite hat-HO-CP model results in a smooth epsilon(nu) ice spectrum, which does not resemble the noise-like spectra of ice met in the known literature. The proposed theory satisfactorily agrees with the experimental ice spectrum measured at - 7 degrees C. The calculated longitudinal optic-transverse optic (LO-TO) splitting occurring at approximate to 250 cm(-1) qualitatively agrees with the measured data. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have made self-consistent models of the density and temperature profiles of the gas and dust surrounding embedded luminous objects using a detailed radiative transfer model together with observations of the spectral energy distribution of hot molecular cores. Using these profiles we have investigated the hot core chemistry which results when grain mantles are evaporated, taking into account the different binding energies of the mantle molecules, as well a model in which we assume that all molecules are embedded in water ice and have a common binding energy. We find that most of the resulting column densities are consistent with those observed toward the hot core G34.3+0.15 at a time around 10^4 years after central luminous star formation. We have also investigated the dependence of the chemical structure on the density profile which suggests an observational possibility of constraining density profiles from determination of the source sizes of line emission from desorbed molecules.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nonlinear equation of motion is found for the dimer comprising two charged H2O molecules. The THz dielectric response to nonharmonic vibration of a nonrigid dipole, forming the hydrogen bond (HB), is found in the direction transverse to this bond. An explicit expression is derived for the autocorrelator that governs the spectrum generated by transverse vibration (TV) of such a dipole. This expression is obtained by analytical solution of the truncated set of recurrence equations. The far infrared (FIR) spectra of ice at the temperature - 7 degrees C are calculated. The wideband, in the wavenumber (frequency) v range 0... 100.0 cm(-1), spectra are obtained for liquid water at room temperature and for supercooled water at -5.6 degrees C. All spectra are represented in terms of the complex permittivity epsilon(v) and the absorption coefficient alpha(v). The obtained analytical formula for epsilon comprises the term epsilon(perpendicular to) pertinent to the studied TV mechanism with three additional terms Delta epsilon(q), Delta epsilon(mu), and epsilon(or) arising, respectively, from: elastic harmonic vibration of charged molecules along the H-bond; elastic reorientation of HB permanent dipoles; and rather free libration of permanent dipoles in 'defects' of water/ice structure. The suggested TV-dielectric relaxation mechanism allows us: (a) to remove the THz 'deficit' of loss epsilon" inherent in previous theoretical studies; (b) to explain the THz loss and absorption spectra in supercooled (SC) water; and (c) to describe, in agreement with the experiment, the low- and high-frequency tails of the two bands of ice H2O located in the range 10...300 cm(-1). Specific THz dielectric properties of SC water are ascribed to association of water molecules, revealed in our study by transverse vibration of HB charged molecules. (C) 2006 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we report the results of the first experimental study of the irradiation of low temperature water ice (30 and 90 k) using low energy (4keV) C-13(+) and C-(2+) ions. (CO2)-C-13 and H2o2 were readily formed within the H2O ice with the product ion yield and grwoth rate observed to be highly dependent on both the sample temperature and the ion charge state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have observed the 3-2 transitions of DCN and (HCN)-N-15 in a number of hot molecular cores previously surveyed by us with the interesting result that the DCN/HCN ratio is low, a few times 10(-3), in the hot cores. The abundance ratio of DCN/HCN is derived both 'on-core' and 'off-core' and, in general is larger at the 'off-core' positions. Comparision with chemical models of these sources indicates that DCN liberated from evaporated ices can be destroyed rapidly in the hot gas by reaction with atomic hydrogen, which works to reset the the initial DCN/HCN ratio in the ice to the gas-phase atomic D/H ratio. The low DCN/HCN abundance ratio we measure can be reached in less than 10(4) years, consistent with previous estimates of the core ages, if the activation energy of the reaction is less than 500 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the results of a model of the chemistry of deuterium-bearing molecules in hot molecular cores. It is found that because hydrogen- and deuterium-bearing molecules are destroyed by the same reactions at about the same rates, the initial fractionation present in ice mantles persists for over 10(4) yr. This is the case for a wide range of physical conditions, so it is safe to infer the fractionation on grain surfaces from observations of deuterated molecules in hot cores. The implications of the observed abundances of deuterium-bearing species in Orion are then discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of temperature on the structure of the ice Ih (0001) surface is considered through a series of molecular dynamics simulations on an ice slab. At relatively low temperatures (200K) a small fraction of surface self-interstitials (i.e. admolecules) appear that are formed exclusively from molecules leaving the outermost bilayer. At higher temperatures (ca. 250 K), vacancies start to appear in the inner part of the outermost bilayer exposing the underlying bilayer and providing sites with a high concentration of the dangling hydrogen bonds. Around 250-260 K aggregates of molecules formed on top of the outermost bilayer from self-interstitials become more mobile and have diffusivities approaching that of liquid water. At similar to 270-280 K the inner bilayer of one surface noticeably destructures and it appears that at above 285 K both surfaces are melting. The observed disparity in the onset of melting between the two sides of the slab is rationalised by considering the relationship between surface energy and the spatial distribution of protons at the surface; thermodynamic stability is conferred on the surface by maximising separations between dangling protons at the crystal exterior. Local hotspots associated with a high dangling proton density are suggested to be susceptible to pre-melting and may be more efficient at trapping species at the external surface than regions with low concentrations of protons thus potentially helping ice particles to catalyse reactions. A preliminary conclusion of this work is that only about 10-20 K below the melting temperature of the particular water potential employed is major disruption of the crystalline lattice noted which could be interpreted as being "liquid", the thickness of this film being about a nanometre.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frustration – the inability to simultaneously satisfy all interactions – occurs in a wide range of systems including neural networks, water ice and magnetic systems. An example of the latter is the so called spin-ice in pyrochlore materials [1] which have attracted a lot of interest not least due to the emergence of magnetic monopole defects when the ‘ice rules’ governing the local ordering breaks down [2]. However it is not possible to directly measure the frustrated property – the direction of the magnetic moments – in such spin ice systems with current experimental techniques. This problem can be solved by instead studying artificial spin-ice systems where the molecular magnetic moments are replaced by nanoscale ferromagnetic islands [3-8]. Two different arrangements of the ferromagnetic islands have been shown to exhibit spin ice behaviour: a square lattice maintaining four moments at each vertex [3,8] and the Kagome lattice which has only three moments per vertex but equivalent interactions between them [4-7]. Magnetic monopole defects have been observed in both types of lattices [7-8]. One of the challenges when studying these artificial spin-ice systems is that it is difficult to arrive at the fully demagnetised ground-state [6-8].
Here we present a study of the switching behaviour of building blocks of the Kagome lattice influenced by the termination of the lattice. Ferromagnetic islands of nominal size 1000 nm by 100 nm were fabricated in five island blocks using electron-beam lithography and lift-off techniques of evaporated 18 nm Permalloy (Ni80Fe20) films. Each block consists of a central island with four arms terminated by a different number and placement of ‘injection pads’, see Figure 1. The islands are single domain and magnetised along their long axis. The structures were grown on a 50 nm thick electron transparent silicon nitride membrane to allow TEM observation, which was back-coated with a 5 nm film of Au to prevent charge build-up during the TEM experiments.
To study the switching behaviour the sample was subjected to a magnetic field strong enough to magnetise all the blocks in one direction, see Figure 1. Each block obeys the Kagome latticeice-rules’ of “2-in, 1-out” or “1-in, 2-out” in this fully magnetised state. Fresnel mode Lorentz TEM images of the sample were then recorded as a magnetic field of increasing magnitude was applied in the opposite direction. While the Fresnel mode is normally used to image magnetic domain structures [9] for these types of samples it is possible to deduce the direction of the magnetisation from the Lorentz contrast [5]. All images were recorded at the same over-focus judged to give good Lorentz contrast.
The magnetisation was found to switch at different magnitudes of the applied field for nominally identical blocks. However, trends could still be identified: all the blocks with any injection pads, regardless of placement and number, switched the direction of the magnetisation of their central island at significantly smaller magnitudes of the applied magnetic field than the blocks without injection pads. It can therefore be concluded that the addition of an injection pad lowers the energy barrier to switching the connected island, acting as a nucleation site for monopole defects. In these five island blocks the defects immediately propagate through to the other side, but in a larger lattice the monopoles could potentially become trapped at a vertex and observed [10].
References

[1] M J Harris et al, Phys Rev Lett 79 (1997) p.2554.
[2] C Castelnovo, R Moessner and S L Sondhi, Nature 451 (2008) p. 42.
[3] R F Wang et al, Nature 439 (2006) 303.
[4] M Tanaka et al, Phys Rev B 73 (2006) 052411.
[5] Y Qi, T Brintlinger and J Cumings, Phys Rev B 77 (2008) 094418.
[6] E Mengotti et al, Phys Rev B 78 (2008) 144402.
[7] S Ladak et al, Nature Phys 6 (2010) 359.
[8] C Phatak et al, Phys Rev B 83 (2011) 174431.
[9] J N Chapman, J Phys D 17 (1984) 623.
[10] The authors gratefully acknowledge funding from the EPSRC under grant number EP/D063329/1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a first principles molecular dynamics (FPMD) study of the interaction of low energy, positively charged, carbon (C+) projectiles with amorphous solid water clusters at 30 K. Reactions involving the carbon ion at an initial energy of 11 eV and 1.7 eV with 30-molecule clusters have been investigated. Simulations indicate that the neutral isoformyl radical, COH, and carbon monoxide, CO, are the dominant products of these reactions. All these reactions are accompanied by the transfer of a proton from the reacting water molecule to the ice, where it forms a hydronium ion. We find that COH is formed either via a direct, "knock-out", mechanism following the impact of the C+ projectile upon a water molecule or by creation of a COH_2^+ intermediate. The direct mechanism is more prominent at higher energies. CO is generally produced following the dissociation of COH. More frequent production of the formyl radical, HCO, is observed here than in gas phase calculations. A less commonly occurring product is the dihydroxymethyl, CH(OH)_2, radical. Although a minor result, its existence gives an indication of the increasing chemical complexity which is possible in such heterogeneous environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The icy surfaces of dust grains in the Interstellar Medium and those of comets, satellites and Kuiper Belt Objects are continuously exposed tophoton and charged particle irradiation. These energetic particles maysputter and induce chemical changes in the ices and the underlyingsurfaces.In the present work 258 nm thick O2 and H2O ices were deposited at 10 K with the thickness measured by a laser interferometer method. Asimple model fit to the reflected laser intensity as measured by aphotodiode detector enabled the refractive index of the ices to bedetermined. The ices were then irradiated with various singly and doublycharged ions such as He+, 13C+, N+, O+ , Ar+, 13C2+, N2+ and O2+ at 4keV. The decrease in ice thickness as a function of ion dose wasmonitored by a laser interferometer and the model used to determine thesputtering yield as shown in Figure 1.In the case of O2 ice thesputtering yields increased with increasing ion mass in good agreementwith a model calculation [Fama, J, Shi, R.A Baragiola, Surface Sci.,602, 156 (2007)]. In the case of O2 ice, O2+ has a significant lowersputtering yield when compared to O+. The sputtering yields for O2 icewere found to be at least 9 times larger compared to those for H2O ice.For H2O ice the sputter yields for C, N and O ions were found todecrease with increasing mass. Doubly charged C, N and O ions which werefound to have the same sputtering yield as the singly charged ionswithin the experimental errors. A preliminary TPD study was carried outusing a QMS to detect the desorbed species from water ice afterirradiation by 6 × 10^15 ions of 13C+ and 13C2+. The formation of13CO and 13CO2 was observed with the yield of 13CO almost of a factor of100 larger than of 13CO2. This is in contrast to our earlier work whereonly CO¬2 was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Naturally occurring ices lie on both interstellar dust grains and on celestial objects, such as those in the outer Solar system. These ices are continuously subjected to irradiation by ions from the solar wind and/or cosmic rays, which modify their surfaces. As a result, new molecular species may form which can be sputtered off into space or planetary atmospheres. We determined the experimental values of sputtering yields for irradiation of oxygen ice at 10 K by singly (He+, C+, N+, O+ and Ar+) and doubly (C2 +, N2 + and O2 +) charged ions with 4 keV kinetic energy. In these laboratory experiments, oxygen ice was deposited and irradiated by ions in an ultra high vacuum chamber at low temperature to simulate the environment of space. The number of molecules removed by sputtering was observed by measurement of the ice thickness using laser interferometry. Preliminary mass spectra were taken of sputtered species and of molecules formed in the ice by temperature programmed desorption (TPD). We find that the experimental sputtering yields increase approximately linearly with the projectile ion mass (or momentum squared) for all ions studied. No difference was found between the sputtering yields for singly and doubly charged ions of the same atom within the experimental uncertainty, as expected for a process dominated by momentum transfer. The experimental sputter yields are in good agreement with values calculated using a theoretical model except in the case of oxygen ions. Preliminary studies have shown molecular oxygen as the dominant species sputtered and TPD measurements indicate ozone formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most ice in nature forms because of impurities which boost the exceedingly low nucleation rate of pure supercooled water. However, the microscopic details of ice nucleation on these substances remain largely unknown. Here, we have unraveled the molecular mechanism and the kinetics of ice formation on kaolinite, a clay mineral playing a key role in climate science. We find that the formation of ice at strong supercooling in the presence of this clay is about 20 orders of magnitude faster than homogeneous freezing. The critical nucleus is substantially smaller than that found for homogeneous nucleation and, in contrast to the predictions of classical nucleation theory (CNT), it has a strong two-dimensional character. Nonetheless, we show that CNT describes correctly the formation of ice at this complex interface. Kaolinite also promotes the exclusive nucleation of hexagonal ice, as opposed to homogeneous freezing where a mixture of cubic and hexagonal polytypes is observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water ice covers the surface of various objects in the outer Solar system.Within the heliopause, surface ice is constantly bombarded and sputtered by energetic particles from the solar wind and magnetospheres. We report a laboratory investigation of the sputtering yield of water ice when irradiated at 10 K by 4 keV singly (13C+, N+, O+, Ar+) and doubly charged ions (13C2+, N2+, O2+). The experimental values for the sputtering yields are in good agreement with the prediction of a theoretical model. There is no significant difference in the yield for singly and doubly charged ions. Using these yields, we estimate the rate of water ice erosion in the outer Solar system objects due to solar wind sputtering. Temperature-programmed desorption of the ice after irradiation with 13C+ and 13C2+ demonstrated the formation of 13CO and 13CO2, with 13CO being the dominant formed species.