9 resultados para Larva

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nematode parasites of the genus Trichinella are intracellular and distinct life cycle stages invade intestinal epithelial and skeletal muscle cells. Within the genus, Trichinella spiralis and Trichinella pseudospiralis exhibit species-specific differences with respect to host-parasite complex formation and host immune modulation. Parasite excretory-secretory (ES) proteins play important roles at the host-parasite interface and are thought to underpin these differences in biology. Serine proteases are among the most abundant group of T. spiralis ES proteins and multiple isoforms of the muscle larvae-specific TspSP-1 serine protease have been identified. Recently, a similar protein (TppSP-1) in T. pseudospiralis muscle larvae was identified. Here we report the cloning and characterisation of the full-length transcript of TppSP-1 and present comparative data between TspSP-1 and TppSP-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After digestion of infected meat the free L1 of Trichinella spp. penetrate the intestinal mucosa where they moult to the mature adult stage. We have used proteomics to identify changes in protein secretion during in vitro culture of free T. spiralis muscle larvae under different environmental conditions, and to correlate these changes with their infectivity in mice. Muscle larvae were cultured in different media (RPMI-1640, C-199 and HBSS) under conditions of anaerobiosis, microaerobiosis and in 5% CO(2) at 37 degrees C. Following incubation the larval excretory/secretory proteins were analysed by two-dimensional gel electrophoresis and the larvae were used to orally infect naïve CD1 mice. For all culture media tested, infectivity of the L1 was preserved following incubation in anaerobic conditions. In contrast, the infectivity of worms cultured in nutrient-rich media was almost completely abolished in both microaerobiosis and in the presence of 5% CO(2). Some infectivity was retained in poor or reduced culture media. Comparative analysis of larval infectivity and protein secretion showed that loss of infectivity correlated with the appearance of non-tyvelosylated proteins that in turn may be related to the onset of moulting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nematodes Trichinella spiralis and Trichinella pseudospiralis are both intracellular parasites of skeletal muscle cells and induce profound alterations in the host cell resulting in a re-alignment of muscle-specific gene expression. While T. spiralis induces the production of a collagen capsule surrounding the host-parasite complex, T. pseudospiralis exists in a non-encapsulated form and is also characterised by suppression of the host inflammatory response in the muscle. These observed differences between the two species are thought to be due to variation in the proteins excreted or secreted (ES proteins) by the muscle larva. In this study, we use a global proteomics approach to compare the ES protein profiles from both species and to identify individual T. pseudospiralis proteins that complement earlier studies with T. spiralis. Following two-dimensional gel electrophoresis, tandem mass spectrometry was used to identify the peptide spots. In many cases identification was aided by the determination of partial peptide sequence from selected mass ions. The T. pseudospiralis spots identified included the major secreted glycoproteins and the secreted 5'-nucleotidase. Furthermore, two major groups of T. spiralis-specific proteins and several T. pseudospiralis-specific proteins were identified. Our results demonstrate the value of proteomics as a tool for the identification of ES proteins that are differentially expressed between Trichinella species and as an aid to identifying key parasite proteins that are involved in the host-parasite interaction. The value of this approach will be further enhanced by data arising out the current T. spiralis genome sequencing project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trichinella spiralis is an intracellular nematode parasite of mammalian skeletal muscle. Infection of the muscle cell leads to the formation of a host-parasite complex that results in profound alterations to the host cell and a re-alignment of muscle-specific gene expression. The role of parasite excretory-secretory (ES) proteins in mediating these effects is currently unknown, largely due to the difficulty in identifying and assigning function to individual proteins. In this study, a global proteomics approach was used to analyse the ES proteins from T. spiralis muscle larvae. Following 2-DE of ES proteins,MALDI-TOF-MS and LC-MS/MS were used to identify the peptide spots. Specific Trichinella EST databases were assembled and used to analyse the data. Despite the current absence of a Trichinella genome-sequencing project, 43 out of 52 protein spots analysed were identified and included the major secreted glycoproteins. Other novel proteins were identified from matches with sequences in the T. spiralis database. Our results demonstrate the value of proteomics as a tool for the identification of Trichinella ES proteins and in the study of the molecular mechanism underpinning the formation of the host-parasite complex during Trichinella infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The excretory-secretory (ES) proteins of nematode parasites are of major interest as they function at the host-parasite interface and are likely to have roles crucial for successful parasitism. Furthermore, the ES proteins of intracellular nematodes such as Trichinella spiralis may also function to regulate gene expression in the host cell. In a recent proteomic analysis we identified a novel secreted cystatin-like protein from T. spiralis L1 muscle larva. Here we show that the protein, MCD-1 (multi-cystatin-like domain protein 1), contains three repeating cystatin-like domains and analysis of the mcd-1 gene structure suggests that the repeated domains arose from duplication of an ancestral cystatin gene. Cystatins are a diverse group of cysteine protease inhibitors and those secreted by parasitic nematodes are important immuno-modulatory factors. The cystatin superfamily also includes cystatin-like proteins that have no cysteine protease inhibitory activity. A recombinant MCD-1 protein expressed as a GST-fusion protein in Escherichia coli failed to inhibit papain in vitro suggesting that the T. spiralis protein is a new member of the non-inhibitory cystatin-related proteins. MCD-1 secreted from T. spiralis exists as high- and low-molecular weight isoforms and we show that a recombinant MCD-1 protein secreted by HeLa cells undergoes pH-dependent processing that may result in the release of individual cystatin-like domains. Furthermore, we found that mcd-1 gene expression is largely restricted to intracellular stages with the highest levels of expression in the adult worms. It is likely that the major role of the protein is during the intestinal stage of T. spiralis infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Infection of mammalian skeletal muscle with the intracellular parasite Trichinella spiralis results in profound alterations in the host cell and a realignment of host cell gene expression. The role of parasite excretory/secretory (E/S) products in mediating these effects is unknown, largely due to the difficulty in identifying and assigning function to individual proteins. In this study, we have used two-dimensional electrophoresis to analyse the profile of muscle larva excreted/secreted proteins and have coupled this to protein identification using MALDI-TOF mass spectrometry. Interpretation of the peptide mass fingerprint data has relied primarily on the interrogation of a custom-made Trichinella EST database and the NemaGene cluster database for T. spiralis. Our results suggest that this proteomic approach is a useful tool to study protein expression in Trichinella spp. and will contribute to the identification of excreted/secreted proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The implementation of infection models that approximate human disease is essential for understanding pathogenesis at the molecular level and for testing new therapies before they are entered into clinical stages. Insects are increasingly being used as surrogate hosts because they share, with mammals, essential aspects of the innate immune response to infections. We examined whether the larva of the wax moth Galleria mellonella could be used as a host model to conceptually approximate Klebsiella pneumoniae-triggered pneumonia. We report that the G. mellonella model is capable of distinguishing between pathogenic and nonpathogenic Klebsiella strains. Moreover, K. pneumoniae infection of G. mellonella models some of the known features of Klebsiella-induced pneumonia, i.e., cell death associated with bacterial replication, avoidance of phagocytosis by phagocytes, and the attenuation of host defense responses, chiefly the production of antimicrobial factors. Similar to the case for the mouse pneumonia model, activation of innate responses improved G. mellonella survival against subsequent Klebsiella challenge. Virulence factors necessary in the mouse pneumonia model were also implicated in the Galleria model. We found that mutants lacking capsule polysaccharide, lipid A decorations, or the outer membrane proteins OmpA and OmpK36 were attenuated in Galleria. All mutants activated G. mellonella defensive responses. The Galleria model also allowed us to monitor Klebsiella gene expression. The expression levels of cps and the loci implicated in lipid A remodeling peaked during the first hours postinfection, in a PhoPQ- and PmrAB-governed process. Taken together, these results support the utility of G. mellonella as a surrogate host for assessing infections with K. pneumoniae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epidermal growth factor receptor pathway substrate clone 15 (Eps15) is a protein implicated in endocytosis, endosomal protein sorting, and cytoskeletal organization. Its role is, however, still unclear, because of reasons including limitations of dominant-negative experiments and apparent redundancy with other endocytic proteins. We generated Drosophila eps15-null mutants and show that Eps15 is required for proper synaptic bouton development and normal levels of synaptic vesicle (SV) endocytosis. Consistent with a role in SV endocytosis, Eps15 moves from the center of synaptic boutons to the periphery in response to synaptic activity. The endocytic protein, Dap160/intersectin, is a major binding partner of Eps15, and eps15 mutants phenotypically resemble dap160 mutants. Analyses of eps15 dap160 double mutants suggest that Eps15 functions in concert with Dap160 during SV endocytosis. Based on these data, we hypothesize that Eps15 and Dap160 promote the efficiency of endocytosis from the plasma membrane by maintaining high concentrations of multiple endocytic proteins, including dynamin, at synapses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stock structure of turbot was investigated between samples from S-Norway, the Irish Sea and the Kattegat, using 12 microsatellite loci and compared to the turbot caught in Icelandic waters. Highly significant genetic differentiation was observed between samples from Kattegat and other areas. Significant genetic differentiation was also observed between the Irish Sea sample on one hand and Iceland and S-Norway on the other hand. No significant genetic differentiation was observed between Iceland and S-Norway. Otoliths of 25 turbot, age ranging from 3 to 19 years, were subjected to nearly 300 mass spectrometry determinations of stable oxygen and carbon isotopes. Oxygen isotope composition (δ18O) in the otolith samples was used to estimate ambient temperature at time of otolith accretion, and yielded estimated temperatures experienced by the turbot ranging from 3 to 15°C. Overall, the genetic analysis indicates panmixia between turbot in Icelandic and Norwegian waters. While the extensive migration of larvae between Norway and Iceland is unlikely, passive drift of turbot larva from other areas (e.g. Ireland) cannot be ruled out.