12 resultados para Hymenoptera

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Neotropical Euglossini (Hymenoptera: Apidae) are important pollinators of many flowering plants, particularly orchids. Lack of highly polymorphic genetic markers for euglossine species has limited the study of their social organization and inbreeding. We therefore developed microsatellite markers for two species, Eulaema nigrita (11 loci) and Euglossa cordata (nine loci), most of which were highly polymorphic in the source species and in a range of related euglossine bees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polymerase chain reaction (PCR) based method was developed for the specific and sensitive diagnosis of the microsporidian parasite Nosema bombi in bumble bees (Bombus spp.). Four primer pairs, amplifying ribosomal RNA (rRNA) gene fragments, were tested on N. bombi and the related microsporidia Nosema apis and Nosema ceranae, both of which infect honey bees. Only primer pair Nbombi-SSU-Jf1/Jr1 could distinguish N. bombi (323 bp amplicon) from these other bee parasites. Primer pairs Nbombi-SSU-Jf1/Jr1 and ITS-f2/r2 were then tested for their sensitivity with N. bombi spore concentrations from 107 down to 10 spores diluted in 100 mu l of either (i) water or (ii) host bumble bee homogenate to simulate natural N. bombi infection (equivalent to the DNA from 10(6) spores down to 1 spore per PCR). Though the N. bombi-specific primer pair Nbombi-SSU-Jf1/Jr1 was relatively insensitive, as few as 10 spores per extract (equivalent to 1 spore per PCR) were detectable using the N. bombi-non-specific primer pair ITS-f2/r2, which amplifies a short fragment of similar to 120 bp. Testing 99 bumble bees for N. bombi infection by light microscopy versus PCR diagnosis with the highly sensitive primer pair ITS-f2/r2 showed the latter to b more accurate. PCR diagnosis of N. bombi using a combination of two primer pairs (Nbombi-SSU-Jf1/Jr1 and ITS-f2/r2) provides increased specificity, sensitivity, and detection of all developmental stages compared with light microscopy. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solitary and presocial aculueate Hymenoptera are parasitized by a range of dipteran species in the families Axithomyiidae, Bombyliidae, Conopidae, Phoridae, and Sarcophagidae that are likely to impact on their hosts. We undertook a study over several years of a univoltine and communal bee, Andrena agilissima, and its main dipteran parasites, in particular the satellite fly Leucophora personata (Diptera: Anthomyiidae). Behavioural and ecological data were collected from one nesting aggregation of the host bee on the island of Elba, Italy, from 1993 to 2003, and from a foraging site of the bee, ca 5 km from the nesting aggregation. Other Diptera associated with A. agilissmia at the field site were the bee fly Bombylius fimbriatus (Bombyliidae), the conopid fly Zodion cinereum (Conopidae), and the scuttle fly Megaselia andrenae (Phoridae). The phenology of the Diptera broadly overlapped with that of their host across the season of activity (end of April and all of May). Diurnal activity patterns differed slightly; L. personata in particular was active at the host's nesting site before A. agilissima. Female satellite flies also showed a range of behaviours in gaining entry to a host nest. We summarize published data on this and other Leucophora species that parasitize Andrena host bees. Host bees returning to their nests occasionally undertook zig-zag flight manoeuvres if followed by a satellite fly that were generally successful in evading the fly. Satellite flies that entered a nest, presumably to oviposit, were less likely to remain therein if another host bee entered the same nest, suggesting that one advantage to communal nesting for this host is a reduction in brood cell parasitism by L. personata. We provide the first clear evidence for parasitism by a Zodion of any Andrena host. Both L. personata and M. andrenae concentrated their parasitic activities in the zone of the host nesting aggregation with highest nest densities. Three of the Diptera, L. personata, B. fimbriatus, and Z. cinereum, seemed to have extremely low rates of parasitism whilst that of M. andrenae appeared low. Though they have refined parasitic behaviour that allows them to gain entry into host nests (L. personata, B. fimbriatus, and M. andrenae) or to parasitize adults (Z. cinercum), these parasites seem not to impact upon the dynamics of the host A. agilissima at the nesting aggregation, and the host possesses traits to reduce parasitism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sweat bees (family Halictidae) comprise a numerous and diverse group that are arguably among the most socially labile of all insect taxa. Given the lack of highly variable markers for eusocial species of the family, we developed a suite of dinucleotide and trinucleotide markers for one of its members, the Eurasian Lasioglossum malachurum, and used them to amplify DNA from other halictids. Loci were highly variable in L. malachurum and amplified DNA from many other halictids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations of queen, worker and male bumble bees (Bombus terrestris) showed that all individuals became infected with Nosema bombi. Infections were found in Malpighian tubules, thorax muscles, fat body tissue and nerve tissue, including the brain. Ultrastructural studies revealed thin walled emptied spores in host cell cytoplasm interpreted as autoinfective spores, besides normal spores (environmental spores) intended for parasite transmission between hosts. The nucleotide sequence of the gene coding for the small subunit rRNA (SSU-rRNA) from Microsporidia isolated from B. terrestris, B. lucorum, and B. hortorum were identical, providing evidence that N. bombi infects multiple hosts. The sequence presented here (GenBank Accession no AY008373) is different from an earlier submission to GenBank (Accession no U26158) of a partial sequence of the same gene based on material collected from B. terrestris. It still remains to be investigated if there is species diversity among Microsporidia found in bumble bees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insects of the order Hymenoptera are biologically and economically important members of natural and agro ecosystems and exhibit diverse biologies, mating systems, and sex pheromones. We review what is known of their sex pheromone chemistry and function, paying particular emphasis to the Hymenoptera Aculeata (primarily ants, bees, and sphecid and vespid wasps), and provide a framework for the functional classification of their sex pheromones. Sex pheromones often comprise multicomponent blends derived from numerous exocrine tissues, including the cuticle. However, very few sex pheromones have been definitively characterized using bioassays, in part because of the behavioral sophistication of many Aculeata. The relative importance of species isolation versus sexual selection in shaping sex pheromone evolution is still unclear. Many species appear to discriminate among mates at the level of individual or kin/colony, and they use antiaphrodisiacs. Some orchids use hymenopteran sex pheromones to dupe males into performing pseudocopulation, with extreme species specificity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many insect species vary in their degree of foraging specialisation, with many bee species considered polyphagic (polylectic). Wild, non-managed bee species vary in their conservation status, and species-specific biological traits such as foraging specialisation may play an important role in determining variance in population declines. Current agri-environment schemes (AESs) prescribe the introduction of flower seed mixes for agricultural systems to aid the conservation of wild bees. However, the extent to which flower combinations adequately meet bee foraging requirements is poorly known. We quantitatively assessed pollen use and selectivity using two statistical approaches: Bailey's Intervals and Compositional Analysis, in an examplar species, a purportedly polylectic and rare bee, Colletes floralis, across 7 sites through detailed analysis of bee scopal pollen loads and flower abundance. Both approaches provided good congruence, but Compositional Analysis was more robust to small sample sizes. We advocate its use for the quantitative determination of foraging behaviour and dietary preference. Although C. floralis is polylectic, it showed a clear dietary preference for plants within the family Apiaceae. Where Apiaceae was uncommon, the species exploited alternative resources. Other plant families, such as the Apiaceae, could be included, or have their proportion increased in AES seed mixes, to aid the management of C. floralis and potentially other wild solitary bees of conservation concern. © 2011 The Authors. Insect Conservation and Diversity © 2011 The Royal Entomological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Orchid or euglossine bees are conspicuous Hymenoptera of the Neotropics, where they pollinate numerous plants, including orchids. Allozyme-based analyses have suggested that their populations suffer from inbreeding, as evidenced by so-called diploid male production. We have developed nine polymorphic microsatellite loci for the widespread Euglossa annectans, with observed heterozygosities ranging from 0.143 to 0.952 and between 2 and 9 alleles per species. These loci will be useful for analysis of relatedness, population genetic structure and diploid male production in this and related species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sweat bees display considerable variation in social organization and a few species, such as Halictus rubicundus, are even facultatively eusocial. Fourteen polymorphic, unlinked microsatellite loci were isolated from H. rubicundus and characterized in 45 females. The number of alleles per locus ranged from two to 18 (mean 10.1), observed heterozygosity ranged from 0.24 to 0.98 (mean 0.71) and expected heterozygosity ranged from 0.24 to 0.98 (mean 0.70). Six or more loci cross-amplified in four other sweat bees. These loci will be useful for the study of social evolution and population genetic structure in H. rubicundus and many other sweat bees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although variation in body size has been recently reported in stingless bees (Meliponini), empirical evidence evaluating possible factors related to such variation is lacking, and thus it is not clear if it may have an adaptive significance. We evaluated if variation in the body size and weight of workers of stingless bees fluctuates across a seasonal pattern and if this could be related to characteristics of the food consumed during the larval stage. The weight of larval provisions, their protein, and sugar content were evaluated in four colonies of Nannotrigona perilampoides every 2 months across 1 year. Worker-destined larvae from the same combs were allowed to develop and were sampled as callow workers to determine their weight and size using morphometric data. The weight and size of workers were highly correlated and varied across the seasons in established colonies, suggesting that size variation cycles across the year in stingless bees. An increase in the protein content and, to a lesser degree, the quantity of larval food were positively linked to variation in body weight and size; food with richer protein content resulted in larger and heavier workers. This study provides the first evidence of an effect of the quantity and composition of larval food on the size of workers in stingless bees. Although body weight and size of workers differed across seasons, they were not readily noticeable as changes seem to occur as a continuum across the year. Since size polymorphism was of a larger magnitude across time but not within age cohorts and as it was highly determined by food resources, it may not be an adaptive feature in stingless bees. However, more studies are needed to determine the role of the cyclical change in worker body size on colony performance and thus its adaptive significance in stingless bees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For primitively eusocial insects in which a single foundress establishes a nest at the start of the colony cycle, the solitary provisioning phase before first worker emergence represents a risky period when other, nestless foundresses may attempt to usurp the nest. In the primitively eusocial sweat bee Lasioglossum malachurum (Hymenoptera, Halictidae), spring foundresses compete for nests which are dug into hard soil. Nest-searching foundresses (‘floaters’) frequently inspected nests during this solitary phase and thereby exerted a usurpation pressure on resident queens. Usurpation has been hypothesised to increase across the solitary provisioning phase and favour closure of nests at an aggregation, marking the termination of the solitary provisioning phase by foundresses, before worker emergence. However, our experimental and observational data suggest that usurpation pressure may remain constant or even decrease across the solitary provisioning phase and therefore cannot explain nest closure before first worker emergence. Levels of aggression during encounters between residents and floaters were surprisingly low (9% of encounters across 2 years), and the outcome of confrontations was in favour of residents (resident maintains residency in 94% of encounters across 2 years). Residents were significantly larger than floaters. However, the relationship between queen size and offspring production, though positive, was not statistically significant. Size therefore seems to confer a considerable advantage to a queen during the solitary provisioning phase in terms of nest residency, but its importance in terms of worker production appears marginal. Factors other than intraspecific usurpation need to be invoked to explain the break in provisioning activity of a foundress before first worker emergence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origin of eusociality is often regarded as a change of macroevolutionary proportions [1, 2]. Its hallmark is a reproductive division of labor between the members of a society: some individuals ("helpers" or "workers") forfeit their own reproduction to rear offspring of others ("queens"). In the Hymenoptera (ants, bees, wasps), there have been many transitions in both directions between solitary nesting and sociality [2-5]. How have such transitions occurred? One possibility is that multiple transitions represent repeated evolutionary gains and losses of the traits underpinning sociality. A second possibility, however, is that once sociality has evolved, subsequent transitions represent selection at just one or a small number of loci controlling developmental switches between preexisting alternative phenotypes [2, 6]. We might then expect transitional populations that can express either sociality or solitary nesting, depending on environmental conditions. Here, we use field transplants to directly induce transitions in British and Irish populations of the sweat bee Halictus rubicundus. Individual variation in social phenotype was linked to time available for offspring production, and to the genetic benefits of sociality, suggesting that helping was not simply misplaced parental care [7]. We thereby demonstrate that sociality itself can be truly plastic in a hymenopteran.