171 resultados para Genes XRCC1

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reflux of gastric contents can lead to development of reflux esophagitis and Barrett's esophagus. Barrett's esophagus is a risk factor for esophageal adenocarcinoma. Damage to DNA may lead to carcinogenesis but is repaired through activation of pathways involving polymorphic enzymes, including human 8-oxoguanine glycosylase 1 (hOGG1), X-ray repair cross-complementing 1 (XRCC1), and xeroderma pigmentosum group D (XPD). Of the single nucleotide polymorphisms identified in these genes, hOGG1 Ser 326Cys, XRCC1 Arg 399Gln, and XPD Lys 751Gln are particularly common in Caucasians and have been associated with lower DNA repair capacity. Small studies have reported associations with XPD Lys 751Gln and esophageal adenocarcinoma. XRCC1 Arg 399Gln has been linked to Barrett's esophagus and reflux esophagitis. In a population-based case-control study, we examined associations of the hOGG1 Ser 326Cys, XRCC1 Arg 399Gln, and XPD Lys 751Gln polymorphisms with risk of esophageal adenocarcinoma, Barrett's esophagus, and reflux esophagitis. Genomic DNA was extracted from blood samples collected from cases of esophageal adenocarcinoma (n = 210), Barrett's esophagus (n = 212), reflux esophagitis (n = 230), and normal population controls frequency matched for age and sex (n = 248). Polymorphisms were genotyped using Taq-Man allelic discrimination assays. Odds ratios and 95% confidence intervals were obtained from logistic regression models adjusted for potential confounding factors. There were no statistically significant associations between these polymorphisms and risk of esophageal adenocarcinoma, Barrett's esophagus, or reflux esophagitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main hallmark of diabetic nephropathy is elevation in urinary albumin excretion. We performed a genome-wide linkage scan in 63 extended families with multiple members with type II diabetes. Urinary albumin excretion, measured as the albumin-to-creatinine ratio (ACR), was determined in 426 diabetic and 431 nondiabetic relatives who were genotyped for 383 markers. The data were analyzed using variance components linkage analysis. Heritability (h2) of ACR was significant in diabetic (h2=0.23, P=0.0007), and nondiabetic (h2=0.39, P=0.0001) relatives. There was no significant difference in genetic variance of ACR between diabetic and nondiabetic relatives (P=0.16), and the genetic correlation (rG=0.64) for ACR between these two groups was not different from 1 (P=0.12). These results suggested that similar genes contribute to variation in ACR in diabetic and nondiabetic relatives. This hypothesis was supported further by the linkage results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of the bacterial population of soil surface samples from a creosote-contaminated site showed that up to 50% of the culturable micro-organisms detected were able to utilise a mixture of cresols. From fifty different microbial isolates fourteen that could utilise more than one cresol isomer were selected and identified by 16S rRNA analysis. Eight isolates were Rhodococcus strains and six were Pseudomonas strains. In general, the Rhodococcus strains exhibited a broader growth substrate range than the Pseudomonas strains. The distribution of various extradiol dioxygenase (edo) genes, previously associated with aromatic compound degradation in rhodococci, was determined for the Rhodococcus strains by PCR detection and Southern-blot hybridization. One strain, Rhodococcus sp. I1 exhibited the broadest growth substrate range and possessed five different edo genes. Gene disruption experiments indicated that two genes (edoC and edoD) were associated with isopropylbenzene and naphthalene catabolism respectively. The other Rhodococcus strains also possessed some of the edo genes and one (edoB) was present in all of the Rhodococcus strains analysed. None of the rhodococcal edo genes analysed were present in the Pseudomonas strains isolated from the site. It was concluded that individual strains of Rhodococcus possess a wide degradative ability and may be very important in the degradation of complex mixtures of substrates found in creosote.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gentisate-1,2-dioxygenase genes (gdoA), with homology to a number of bacterial dioxygenases, and genes encoding a putative coenzyme A (CoA)-synthetase subunit (acdB) and a CoA-thioesterase (tieA) were identified in two haloarchaeal isolates. In Haloarcula sp. D1, gdoA was expressed during growth on 4-hydroxybenzoate but not benzoate, and acdB and tieA were not expressed during growth on any of the aromatic substrates tested. In contrast, gdoA was expressed in Haloferax sp. D1227 during growth on benzoate, 3-hydroxybenzoate, cinnamate and phenylpropionate, and both acdB and tieA were expressed during growth on benzoate, cinnamate and phenylpropionate, but not on 3-hydroxybenzoate. This pattern of induction is consistent with these genes encoding steps in a CoA-mediated benzoate pathway in this strain.