26 resultados para Cyclin A2

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

TRPM8 represents an ion channel activated by cold temperatures and cooling agents, such as menthol, that underlies the cold-induced excitation of sensory neurons. Interestingly, the only human tissue outside the peripheral nervous system, in which the expression of TRPM8 transcripts has been detected at high levels, is the prostate, a tissue not exposed to any essential temperature variations. Here we show that the TRPM8 cloned from human prostate and heterologously expressed in HEK-293 cells is regulated by the Ca(2+)-independent phospholipase A(2) (iPLA(2)) signaling pathway with its end products, lysophospholipids (LPLs), acting as its endogenous ligands. LPLs induce prominent prolongation of TRPM8 channel openings that are hardly detectable with other stimuli (e.g. cold, menthol, and depolarization) and that account for more than 90% of the total channel open time. Down-regulation of iPLA(2) resulted in a strong inhibition of TRPM8-mediated functional responses and abolished channel activation. The action of LPLs on TRPM8 channels involved either changes in the local lipid bilayer tension or interaction with the critical determinant(s) in the transmembrane channel core. Based on this, we propose a novel concept of TRPM8 regulation with the involvement of iPLA(2) stimulation. This mechanism employs chemical rather than physical (temperature change) signaling and thus may be the main regulator of TRPM8 activation in organs not exposed to any essential temperature variations, as in the prostate gland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Although severe encephalopathy has been proposed as a possible contraindication to the use of noninvasive positive-pressure ventilation (NPPV), increasing clinical reports showed it was effective in patients with impaired consciousness and even coma secondary to acute respiratory failure, especially hypercapnic acute respiratory failure (HARF). To further evaluate the effectiveness and safety of NPPV for severe hypercapnic encephalopathy, a prospective case-control study was conducted at a university respiratory intensive care unit (RICU) in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) during the past 3 years. METHODS: Forty-three of 68 consecutive AECOPD patients requiring ventilatory support for HARF were divided into 2 groups, which were carefully matched for age, sex, COPD course, tobacco use and previous hospitalization history, according to the severity of encephalopathy, 22 patients with Glasgow coma scale (GCS) <10 served as group A and 21 with GCS = 10 as group B. RESULTS: Compared with group B, group A had a higher level of baseline arterial partial CO2 pressure ((102 +/- 27) mmHg vs (74 +/- 17) mmHg, P <0.01), lower levels of GCS (7.5 +/- 1.9 vs 12.2 +/- 1.8, P <0.01), arterial pH value (7.18 +/- 0.06 vs 7.28 +/- 0.07, P <0.01) and partial O(2) pressure/fraction of inspired O(2) ratio (168 +/- 39 vs 189 +/- 33, P <0.05). The NPPV success rate and hospital mortality were 73% (16/22) and 14% (3/22) respectively in group A, which were comparable to those in group B (68% (15/21) and 14% (3/21) respectively, all P > 0.05), but group A needed an average of 7 cm H2O higher of maximal pressure support during NPPV, and 4, 4 and 7 days longer of NPPV time, RICU stay and hospital stay respectively than group B (P <0.05 or P <0.01). NPPV therapy failed in 12 patients (6 in each group) because of excessive airway secretions (7 patients), hemodynamic instability (2), worsening of dyspnea and deterioration of gas exchange (2), and gastric content aspiration (1). CONCLUSIONS: Selected patients with severe hypercapnic encephalopathy secondary to HARF can be treated as effectively and safely with NPPV as awake patients with HARF due to AECOPD; a trial of NPPV should be instituted to reduce the need of endotracheal intubation in patients with severe hypercapnic encephalopathy who are otherwise good candidates for NPPV due to AECOPD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Androgen receptor (AR) is essential for the maintenance of the male reproductive systems and is critical for the carcinogenesis of human prostate cancers (PCas). D-type cyclins are closely related to the repression of AR function. It has been well documented that cyclin D1 inhibits AR function through multiple mechanisms, but the mechanism of how cyclin D3 exerts its repressive role in the AR signaling pathway remains to be identified. In the present investigation, we demonstrate that cyclin D3 and the 58-kDa isoform of cyclin-dependent kinase 11 (CDK11p58) repressed AR transcriptional activity as measured by reporter assays of transformed cells and prostate-specific antigen expression in PCa cells. AR, cyclin D3, and CDK11p58 formed a ternary complex in cells and were colocalized in the luminal epithelial layer of the prostate. AR activity is controlled by phosphorylation at specific sites. We found that AR was phosphorylated at Ser-308 by cyclin D3/CDK11p58 in vitro and in vivo, leading to the repressed activity of AR transcriptional activation unit 1 (TAU1). Furthermore, androgen-dependent proliferation of PCa cells was inhibited by cyclin D3/CDK11p58 through AR repression. These data suggest that cyclin D3/CDK11p58 signaling is involved in the negative regulation of AR function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CDK11(p58), a 58kDa protein of the PITSLRE kinase family, plays an important role in cell cycle progression, and is closely related to cell apoptosis. To gain further insight into the function of CDK11(p58), we screened a human fetal liver cDNA library for its interacting proteins using the yeast two-hybrid system. Here we report that histone acetyltransferase (HAT) HBO1, a MYST family protein, interacts with CDK11(p58) in vitro and in vivo. CDK11(p58) and HBO1 colocalize in the cell nucleus. Recombinant CDK11(p58) enhances the HAT activity of HBO1 significantly in vitro. Meanwhile, overexpression of CDK11(p58) in mammalian cells leads to the enhanced HAT activity of HBO1 towards free histones. Thus, we conclude that CDK11(p58) is a new interacting protein and a novel regulator of HBO1. Both of the proteins may be involved in the regulation of eukaryotic transcription.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclin D3 is found to play a crucial role not only in progression through the G1 phase as a regulatory subunit of cyclin-dependent kinase 4 (CDK 4) and CDK 6, but also in many other aspects such as cell cycle, cell differentiation, transcriptional regulation and apoptosis. In this work, we screened a human fetal liver cDNA library using human cyclin D3 as bait and identified human eukaryotic initiation factor 3 p28 protein (eIF3k) as a partner of cyclin D3. The association of cyclin D3 with eIF3k was further confirmed by in vitro binding assay, in vivo coimmunoprecipitation, and confocal microscopic analysis. We found that cyclin D3 specifically interacted with eIF3k through its C-terminal domain. Immunofluorescence experiments showed that eIF3k distributed both in nucleus and cytoplasm and colocalized with cyclin D3. In addition, the cellular translation activity in HeLa cells was upregulated by cyclin D3 overexpression and the mRNA levels are constant. These data provide a new clue to our understanding of the cellular function of cyclin D3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclin D1 expression represents one of the key mitogen-regulated events during the G1 phase of the cell cycle, whereas Cyclin D1 overexpression is frequently associated with human malignancy. Here, we describe a novel mechanism regulating Cyclin D1 levels. We find that SNIP1, previously identified as a regulator of Cyclin D1 expression, does not, as previously thought, primarily function as a transcriptional coactivator for this gene. Rather, SNIP1 plays a critical role in cotranscriptional or posttranscriptional Cyclin D1 mRNA stability. Moreover, we show that the majority of nucleoplasmic SNIP1 is present within a previously undescribed complex containing SkIP, THRAP3, BCLAF1, and Pinin, all proteins with reported roles in RNA processing and transcriptional regulation. We find that this complex, which we have termed the SNIP1/SkIP–associated RNA-processing complex, is coordinately recruited to both the 3' end of the Cyclin D1 gene and Cyclin D1 RNA. Significantly, SNIP1 is required for the further recruitment of the RNA processing factor U2AF65 to both the Cyclin D1 gene and RNA. This study shows a novel mechanism regulating Cyclin D1 expression and offers new insight into the role of SNIP1 and associated proteins as regulators of proliferation and cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piclavines AI and A2 have been synthesised for the first time. The route is short with the key step being the reaction of a bicyclic N-acyl iminium ion with 3-trimethysilyl-1-decene. This convergent strategy gave exclusively compounds in which the pendant decenyl group was axial, as a 6:1 mixture of E:Z-alkene diastereoisomers. Reduction of the lactam carbonyl group gave a 6:1 mixture of piclavines Al and A2, (C) 2000 Published by Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Objectives. Megakalyocytes undergo a unique cell cycle by which they replicate their complete genome many times in the absence of cytokinesis, In the search for regulators of the endomitotic cell cycle, we previously produced mice transgenic for cyclin D3 to identify this cyclin as able to enhance ploidy and to increase the number of differentiated cells in the megakaryocytic lineage. Of the D-type cyclins, cyclin D3 and to a much lesser extent cyclin D1, are present in megakaryocytes undergoing endomitosis and these cyclins are, respectively, markedly and moderately upregulated following exposure to the ploidy-promoting factor, Mpl-ligand. Our objective was to explore whether cyclin D1 can mimic the effect of cyclin D3 on ploidy in megakalyocytes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background BRCA1 and cyclin D1 are both essential for normal breast development and mutation or aberration of their expression is associated with breast cancer [1,2]. Cyclin D1 is best known as a G1 cyclin where it regulates the G1 to S phase transition by acting as a rate-limiting subunit of CDK4/6 kinase activity. More recently, however, Stacey has demonstrated that cyclin D1 levels in G2/M determine whether a cell continues to proliferate or exits the cell cycle [3]. The majority of BRCA1 in the cell is bound to BARD1 through their N-terminal RING domains. Heterodimerization is essential for the stability and correct localization of the complex and confers ubiquitin ligase activity to BRCA1. The importance of the ligase activity of BRCA1 to breast cancer development is inferred from the fact that N-terminal diseaseassociated mutations are proposed to reduce ligase activity [4]. Methods Protein–protein interactions were demonstrated using yeast-two-hybrid and coimmunoprecipitation. Protein levels were altered through overexpression, siRNA and antisense technology. The effect of proteasome inhibitors and cycloheximide treatment was also examined. Results We initially identified cyclin D1 as a binding partner of BARD1 in a yeast-two-hybrid screen and defined the minimal binding region as the N-terminus of BARD1. This interaction was confirmed in vivo by coimmunoprecipitation. The N-terminus of BARD1 also binds BRCA1 and imparts ubiquitin ligase activity to the complex. Covalent modification of proteins with ubiquitin is a common regulatory mechanism in eukaryotic cells. Traditionally polyubiquitin chains linked through lysine 48 target proteins for degradation by the 26 S proteasome. We have demonstrated that cyclin D1 protein levels are inversely related to BRCA1 and BARD1 levels in several model systems. Furthermore, regulation of cyclin D1 levels occurs through a post-transcriptional mechanism and requires the ligase activity of BRCA1. Interestingly, this phenomenon is cell-cycle regulated, occurring in G2/M. Conclusion We propose that cyclin D1 is a potential substrate for BRCA1 ubiquitination and that this targets cyclin D1 for proteasomal-mediated degradation. Future work will focus on ascertaining the functional consequence of cyclin D1 regulation by the BRCA1–BARD1 complex; in particular, the impact of BRCA1, mediated through regulation of cyclin D1, on the proliferation versus differentiation decision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human acute-phase serum amyloid A protein (A-SAA) is a major acute phase reactant, the concentration of which increases dramatically as part of the body's early response to inflammation. A-SAA is the product of two almost identical genes, SAA1 and SAA2, which are induced by the pro-inflammatory cytokines, IL-1 and IL-6. In this study, we examine the roles played by the 5'- and 3'-untranslated regions (UTRs) of the SAA2 mRNA in regulating A-SAA2 expression. SAA2 promoter-driven luciferase reporter gene constructs carrying the SAA2 5'-UTR and/or 3'-UTR were transiently transfected into the HepG2 human hepatoma cell line. After induction of chimeric mRNA with IL-1beta and IL-6, the SAA2 5'- and 3'-UTRs were both able to posttranscriptionally modify the expression of the luciferase reporter. The SAA2 5'-UTR promotes efficient translation of the chimeric luciferase transcripts, whereas the SAA2 3'-UTR shares this property and also significantly accelerates the rate of reporter mRNA degradation. Our data strongly suggest that the SAA2 5'- and 3'-UTRs each play significant independent roles in the posttranscriptional regulation of A-SAA2 protein synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously shown that phospholipase A2 (PLA2) activity is rapidly activated by epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA) in renal mesangial cells and other cell systems in a manner that suggests a covalent modification of the PLA2 enzyme(s). This PLA2 activity is cytosolic (cPLA2) and is distinct from secretory forms of PLA2, which are also stimulated in mesangial cells in response to cytokines and other agonists. However, longer-term regulation of cPLA2 in renal cells may also occur at the level of gene expression. Cultured rat mesangial cells were used as a model system to test the effects of EGF and PMA on the regulation of cPLA2 gene expression. EGF and PMA both produced sustained increases in cPLA2 mRNA levels, with a parallel increase in enzyme activity over time. Inhibition of protein synthesis by cycloheximide increased basal cPLA2 mRNA accumulation in serum-starved mesangial cells, and the combination of EGF and cycloheximide resulted in super-induction of cPLA2 gene expression compared with EGF alone. Actinomycin D treatment entirely abrogated the effect of EGF on cPLA2 mRNA accumulation. These findings suggest that regulation of cPLA2 is achieved by factors controlling gene transcription and possibly mRNA stability, in addition to previously characterized posttranslational modifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammalian group-II phospholipases A2 (PLA2) of inflammatory fluids display bactericidal properties, which are dependent on their enzymatic activity. This study shows that myotoxins II (Lys49) and III (Asp49), two group-II PLA2 isoforms from the venom of Bothrops asper, are lethal to a broad spectrum of bacteria. Since the catalytically inactive Lys49 myotoxin II isoform has similar bactericidal effects to its catalytically active Asp49 counterpart, a bactericidal mechanism that is independent of an intrinsic PLA2 activity is demonstrated. Moreover, a synthetic 13-residue peptide of myotoxin II, comprising residues 115-129 (common numbering system) near the C-terminal loop, reproduced the bactericidal effect of the intact protein. Following exposure to the peptide or the protein, accelerated uptake of the hydrophobic probe N-phenyl-N-naphthylamine was observed in susceptible but not in resistant bacteria, indicating that the lethal effect was initiated on the bacterial membrane. The outer membrane, isolated lipopolysaccharide (LPS), and lipid A of susceptible bacteria showed higher binding to the myotoxin II-(115-129)-peptide than the corresponding moieties of resistant strains. Bacterial LPS chimeras indicated that LPS is a relevant target for myotoxin II-(115-129)-peptide. When heterologous LPS of the resistant strain was present in the context of susceptible bacteria, the chimera became resistant, and vice versa. Myotoxin II represents a group-II PLA2 with a direct bactericidal effect that is independent of an intrinsic enzymatic activity, but adscribed to the presence of a short cluster of basic/hydrophobic amino acids near its C-terminal loop.