57 resultados para Chlamydia Pneumoniae, Chronic Infections, Gene Regulation, Human

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We cloned and characterized a 3.3-kb fragment containing the 5'-regulatory region of the human myostatin gene. The promoter sequence contains putative muscle growth response elements for glucocorticoid, androgen, thyroid hormone, myogenic differentiation factor 1, myocyte enhancer factor 2, peroxisome proliferator-activated receptor, and nuclear factor-kappaB. To identify sites important for myostatin's gene transcription and regulation, eight deletion constructs were placed in C(2)C(12) and L6 skeletal muscle cells. Transcriptional activity of the constructs was found to be significantly higher in myotubes compared with that of myoblasts. To investigate whether glucocorticoids regulate myostatin gene expression, we incubated both cell lines with dexamethasone. On both occasions, dexamethasone dose dependently increased both the promoter's transcriptional activity and the endogenous myostatin expression. The effects of dexamethasone were blocked when the cells were coincubated with the glucocorticoid receptor antagonist RU-486. These findings suggest that glucocorticoids upregulate myostatin expression by inducing gene transcription, possibly through a glucocorticoid receptor-mediated pathway. We speculate that glucocorticoid-associated muscle atrophy might be due in part to the upregulation of myostatin expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coordinated regulation of gene expression in higher eukaryotes is complex and poorly understood. Recent technological advances have allowed the first insights into these networks on a genome-wide scale. These investigations have identified transcription factor target sites in the genome and successfully predicted cooperative interactions with other factors. However, a detailed understanding of the processes that coordinate gene expression remains elusive. Here, we highlight the advances that have been made using current methods, and the need for new technologies to address the gaps in our knowledge and to map these complex pathways further.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel microarray was constructed with DNA PCR product probes targeting species specific functional genes of nine clinically significant respiratory pathogens, including the Gram-positive organisms (Streptococcus pneumoniae, Streptococcus pyogenes), the Gram-negative organisms (Chlamydia pneumoniae, Coxiella burnetii Haemophilus spp., Legionella pneumophila, Moraxella catarrhalis, and Pseudomonas aeruginosa), as well as the atypical bacterium, Mycoplasma pneumoniae. In a "proof-of-concept" evaluation of the developed microarray, the microarray was compared with real-time PCR from 14 sputum specimens from COPD patients. All of the samples positive for bacterial species in real-time PCR were also positive for the same bacterial species using the microarray. This study shows that a microarray using PCR probes is a potentially useful method to monitor the populations of bacteria in respiratory specimens and can be tailored to specific clinical needs such as respiratory infections of particular patient populations, including patients with cystic fibrosis and bronchiectasis. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) is associated with a reciprocal and balanced translocation involving the retinoic acid receptor-alpha (RARalpha). All-trans retinoic acid (ATRA) is used to treat APL and is a potent morphogen that regulates HOX gene expression in embryogenesis and organogenesis. HOX genes are also involved in hematopoiesis and leukemogenesis. Thirty-nine mammalian HOX genes have been identified and classified into 13 paralogous groups clustered on 4 chromosomes. They encode a complex net-Work of transcription regulatory proteins whose precise targets remain poorly understood. The overall function of the network appears to be dictated by gene dosage. To investigate the mechanisms involved in HOX gene regulation in hematopoiesis and leukemogenesis by precise measurement of individual HOX genes, a small-array real-time HOX (SMART-HOX) quantitative polymerase chain reaction (PCR) platform was designed and validated. Application of SMART-HOX to 16 APL bone marrow samples revealed a global down-regulation of 26 HOX genes compared with normal controls. HOX gene expression was also altered during differentiation induced by ATRA in the PML-RARalpha(+) NB4 cell line. PML-RARalpha, fusion proteins have been reported to act as part of a repressor complex during myelold cell differentiation, and a model linking HOX gene expression to this PML-RARalpha repressor complex is now proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Burkholderia cenocepacia is an important opportunistic pathogen causing serious chronic infections in patients with cystic fibrosis (CF). Adaptation of B. cenocepacia to the CF airways may play an important role in the persistence of the infection. We have identified a sensor kinase-response regulator (BCAM0379) named AtsR in B. cenocepacia K56-2 that shares 19% amino acid identity with RetS from Pseudomonas aeruginosa. atsR inactivation led to increased biofilm production and a hyperadherent phenotype in both abiotic surfaces and lung epithelial cells. Also, the atsR mutant overexpressed and hypersecreted an Hcp-like protein known to be specifically secreted by the type VI secretion system (T6SS) in other gram-negative bacteria. Amoeba plaque assays demonstrated that the atsR mutant was more resistant to Dictyostelium predation than the wild-type strain and that this phenomenon was T6SS dependent. Macrophage infection assays also demonstrated that the atsR mutant induces the formation of actin-mediated protrusions from macrophages that require a functional Hcp-like protein, suggesting that the T6SS is involved in actin rearrangements. Three B. cenocepacia transposon mutants that were found in a previous study to be impaired for survival in chronic lung infection model were mapped to the T6SS gene cluster, indicating that the T6SS is required for infection in vivo. Together, our data show that AtsR is involved in the regulation of genes required for virulence in B. cenocepacia K56-2, including genes encoding a T6SS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) is associated with a reciprocal and balanced translocation involving the retinoic acid receptor-alpha (RARalpha). All-trans retinoic acid (ATRA) is used to treat APL and is a potent morphogen that regulates HOX gene expression in embryogenesis and organogenesis. HOX genes are also involved in hematopoiesis and leukemogenesis. Thirty-nine mammalian HOX genes have been identified and classified into 13 paralogous groups clustered on 4 chromosomes. They encode a complex network of transcription regulatory proteins whose precise targets remain poorly understood. The overall function of the network appears to be dictated by gene dosage. To investigate the mechanisms involved in HOX gene regulation in hematopoiesis and leukemogenesis by precise measurement of individual HOX genes, a small-array real-time HOX (SMART-HOX) quantitative polymerase chain reaction (PCR) platform was designed and validated. Application of SMART-HOX to 16 APL bone marrow samples revealed a global down-regulation of 26 HOX genes compared with normal controls. HOX gene expression was also altered during differentiation induced by ATRA in the PML-RARalpha(+) NB4 cell line. PML-RARalpha fusion proteins have been reported to act as part of a repressor complex during myeloid cell differentiation, and a model linking HOX gene expression to this PML-RARalpha repressor complex is now proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofilms are communities of microbial cells that underpin diverse processes including sewage bioremediation, plant growth promotion, chronic infections and industrial biofouling. The cells resident in the biofilm are encased within a self-produced exopolymeric matrix that commonly comprises lipids, proteins that frequently exhibit amyloid-like properties, eDNA and exopolysaccharides. This matrix fulfils a variety of functions for the community, from providing structural rigidity and protection from the external environment to controlling gene regulation and nutrient adsorption. Critical to the development of novel strategies to control biofilm infections, or the capability to capitalize on the power of biofilm formation for industrial and biotechnological uses, is an in-depth knowledge of the biofilm matrix. This is with respect to the structure of the individual components, the nature of the interactions between the molecules and the three-dimensional spatial organization. We highlight recent advances in the understanding of the structural and functional role that carbohydrates and proteins play within the biofilm matrix to provide three-dimensional architectural integrity and functionality to the biofilm community. We highlight, where relevant, experimental techniques that are allowing the boundaries of our understanding of the biofilm matrix to be extended using Escherichia coli, Staphylococcus aureus, Vibrio cholerae, and Bacillus subtilis as exemplars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schistosomiasis is a major neglected tropical disease that afflicts more than 240 million people, including many children and young adults, in the tropics and subtropics. The disease is characterized by chronic infections with significant residual morbidity and is of considerable public health importance, with substantial socioeconomic impacts on impoverished communities. Morbidity reduction and eventual elimination through integrated intervention measures are the focuses of current schistosomiasis control programs. Precise diagnosis of schistosome infections, in both mammalian and snail intermediate hosts, will play a pivotal role in achieving these goals. Nevertheless, despite extensive efforts over several decades, the search for sensitive and specific diagnostics for schistosomiasis is ongoing. Here we review the area, paying attention to earlier approaches but emphasizing recent developments in the search for new diagnostics for schistosomiasis with practical applications in the research laboratory, the clinic, and the field. Careful and rigorous validation of these assays and their cost-effectiveness will be needed, however, prior to their adoption in support of policy decisions for national public health programs aimed at the control and elimination of schistosomiasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paraoxonase 1 (PON1) has been suggested as a plausible candidate gene for human longevity due to its modulation of cardiovascular disease risk, by preventing oxidation of atherogenic low-density lipoprotein. The role of the PON1 192 Q/R polymorphism has been analyzed for association with survival at old age in several populations, albeit with controversial results. To reconcile the conflicting evidence, we performed a large association study with two samples of 2357 Germans and 1025 French, respectively. We combined our results with those from seven previous studies in the largest and most comprehensive meta-analysis on PON1 192 Q/R and longevity to-date, to include a total of 9580 individuals. No significant association of PON1 192 Q/R with longevity was observed, for either R allele or carriership. This finding relied on very large sample sizes, is supported by different analysis methods and is therefore considered very robust. Moreover, we have investigated a potential interaction of PON1 192 Q/R with APOE epsilon4 using data from four populations. Whereas a significant result was found in the German sample, this could not be confirmed in the other examined groups. Our large-scale meta-analysis provided no evidence that the PON1 192 Q/R polymorphism is associated with longevity, but this does not exclude the possibility of population-specific effects due to the influence of, and interaction between, different genetic and/or environmental factors (e.g. diet).