5 resultados para COI
em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast
Resumo:
Morphometrics and DNA microsatellites were used to analyse the genetic structure of populations of the stingless bee M. beecheii from two extremes of its geographic range. The results showed that populations from Costa Rica and Yucatan exhibit substantial phenotypic and molecular differentiation. Bees from Yucatan were smaller and paler than those from Costa Rica. The value of multilocus F-ST = 0.280 (P <0.001) confirmed that there were significant molecular genetic differences between the two populations. Populations showed significant deviation from Hardy Weinberg equilibrium and the values of FIS (the inbreeding coefficient) were positive for Costa Rica = 0.416 and the Yucatan Peninsula = 0.193, indicating a lack of heterozygotes in both populations possibly due to inbreeding. The DNA sequence of 678 bp of the mitochondrial gene COI differed between populations by 1.2%. The results of this study should be considered in conservation programmes, particularly with regard to the movement of colonies between regions.
Resumo:
Eusociality is widely considered a major evolutionary transition. The socially polymorphic sweat bee Halictus rubicundus, solitary in cooler regions of its holarctic range and eusocial in warmer parts, is an excellent model organism to address this transition, and specifically the question of whether sociality is associated with a strong barrier to gene flow between phenotypically divergent populations. Mitochondrial DNA (COI) from specimens collected across the British Isles, where both solitary and social phenotypes are represented, displayed limited variation, but placed all specimens in the same European lineage; haplotype network analysis failed to differentiate solitary and social lineages. Microsatellite genetic variability was high and enabled us to quantify genetic differentiation among populations and social phenotypes across Great Britain and Ireland. Results from conceptually different analyses consistently showed greater genetic differentiation between geographically distant populations, independently of their social phenotype, suggesting that the two social forms are not reproductively isolated. A landscape genetic approach revealed significant isolation by distance (Mantel test r = 0.622, p
Resumo:
Despite the importance of gelatinous zooplankton as components of marine ecosystems, both ecologically and socio-economically, relatively little is known about population persistence or connectivity in jellyfish. In the present study, we employed a combination of nuclear microsatellite markers and sequence data from the mitochondrial cytochrome oxidase I (COI) gene to determine levels and patterns of population genetic structuring in the holoplanktonic jellyfish Pelagia noctiluca across the northeast Atlantic Ocean and Mediterranean Sea. Our results indicate a high degree of connectivity in P. noctiluca, with little evidence of geographical structuring of genetic variation. A small but significant differentiation of Atlantic Ocean and Mediterranean stocks was detected based on the microsatellite data, but no evidence of differentiation was observed with the mtDNA, probably due to the higher power of the microsatellites to detect low levels of genetic structuring. Two clearly distinct groups of genotypes were observed within the mtDNA COI, which probably diverged in the early Pleistocene, but with no evidence of geographical structuring. Palaeodistribution modelling of P. noctiluca at the Last Glacial Maximum (LGM; ca. 21 KYA) indicated large areas of suitable habitat south of the species’ current-day distribution, with little reduction in area. The congruent evidence for minimal genetic differentiation from the nuclear microsatellites and the mtDNA, coupled with the results of the palaeodistribution modelling, supports the idea of long-term population stability and connectivity, thus providing key insights into the population dynamics and demography of this important species
Resumo:
Increasing consumer demand for seafood, combined with concern over the health of our oceans, has led to many initiatives aimed at tackling destructive fishing practices and promoting the sustainability of fisheries. An important global threat to sustainable fisheries is Illegal, Unreported and Unregulated (IUU) fishing, and there is now an increased emphasis on the use of trade measures to prevent IUU-sourced fish and fish products from entering the international market. Initiatives encompass new legislation in the European Union requiring the inclusion of species names on catch labels throughout the distribution chain. Such certification measures do not, however, guarantee accuracy of species designation. Using two DNA-based methods to compare species descriptions with molecular ID, we examined 386 samples of white fish, or products labelled as primarily containing white fish, from major UK supermarket chains. Species specific real-time PCR probes were used for cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) to provide a highly sensitive and species-specific test for the major species of white fish sold in the UK. Additionally, fish-specific primers were used to sequence the forensically validated barcoding gene, mitochondrial cytochrome oxidase I (COI). Overall levels of congruence between product label and genetic species identification were high, with 94.34% of samples correctly labelled, though a significant proportion in terms of potential volume, were mislabelled. Substitution was usually for a cheaper alternative and, in one case, extended to a tropical species. To our knowledge, this is the first published study encompassing a large-scale assessment of UK retailers, and if representative, indicates a potentially significant incidence of incorrect product designation.
Resumo:
Seafloor massive sulfide (SMS) mining will likely occur at hydrothermal systems in the near future. Alongside their mineral wealth, SMS deposits also have considerable biological value. Active SMS deposits host endemic hydrothermal vent communities, whilst inactive deposits support communities of deep water corals and other suspension feeders. Mining activities are expected to remove all large organisms and suitable habitat in the immediate area, making vent endemic organisms particularly at risk from habitat loss and localised extinction. As part of environmental management strategies designed to mitigate the effects of mining, areas of seabed need to be protected to preserve biodiversity that is lost at the mine site and to preserve communities that support connectivity among populations of vent animals in the surrounding region. These "set-aside" areas need to be biologically similar to the mine site and be suitably connected, mostly by transport of larvae, to neighbouring sites to ensure exchange of genetic material among remaining populations. Establishing suitable set-asides can be a formidable task for environmental managers, however the application of genetic approaches can aid set-aside identification, suitability assessment and monitoring. There are many genetic tools available, including analysis of mitochondrial DNA (mtDNA) sequences (e.g. COI or other suitable mtDNA genes) and appropriate nuclear DNA markers (e.g. microsatellites, single nucleotide polymorphisms), environmental DNA (eDNA) techniques and microbial metagenomics. When used in concert with traditional biological survey techniques, these tools can help to identify species, assess the genetic connectivity among populations and assess the diversity of communities. How these techniques can be applied to set-aside decision making is discussed and recommendations are made for the genetic characteristics of set-aside sites. A checklist for environmental regulators forms a guide to aid decision making on the suitability of set-aside design and assessment using genetic tools. This non-technical primer document represents the views of participants in the VentBase 2014 workshop.