7 resultados para 060108 Protein Trafficking

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Research into the cause of Alzheimer's disease (AD) has identified strong connections to cholesterol. Cholesterol and cholesterol esters can modulate amyloid precursor protein (APP) processing, thus altering production of the A beta peptides that deposit in cortical amyloid plaques. Processing depends on the encounter between APP and cellular secretases, and is thus subject to the influence of cholesterol-dependent factors including protein trafficking, and distribution between membrane subdomains. We have directly investigated endogenous membrane beta-secretase activity in the presence of a range of membrane cholesterol levels in SH-SY5Y human neuroblastoma cells and human platelets. Membrane cholesterol significantly influenced membrane beta-secretase activity in a biphasic manner, with positive correlations at higher membrane cholesterol levels, and negative correlations at lower membrane cholesterol levels. Platelets from individuals with AD or mild cognitive impairment (n = 172) were significantly more likely to lie within the negative correlation zone than control platelets (n = 171). Pharmacological inhibition of SH-SY5Y beta-secretase activity resulted in increased membrane cholesterol levels. Our findings are consistent with the existence of a homeostatic feedback loop between membrane cholesterol level and membrane beta-secretase activity, and suggest that this regulatory mechanism is disrupted in platelets from individuals with cognitive impairment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

EpsinR is a clathrin-coated vesicle (CCV) enriched 70-kD protein that binds to phosphatidylinositol-4-phosphate, clathrin, and the gamma appendage domain of the adaptor protein complex 1 (AP1). In cells, its distribution overlaps with the perinuclear pool of clathrin and AP1 adaptors. Overexpression disrupts the CCV-dependent trafficking of cathepsin D from the trans-Golgi network to lysosomes and the incorporation of mannose-6-phosphate receptors into CCVs. These biochemical and cell biological data point to a role for epsinR in AP1/clathrin budding events in the cell, just as epsin1 is involved in the budding of AP2 CCVs. Furthermore, we show that two gamma appendage domains can simultaneously bind to epsinR with affinities of 0.7 and 45 microM, respectively. Thus, potentially, two AP1 complexes can bind to one epsinR. This high affinity binding allowed us to identify a consensus binding motif of the form DFxDF, which we also find in gamma-synergin and use to predict that an uncharacterized EF-hand-containing protein will be a new gamma binding partner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic respiratory infections by Burkholderia cenocepacia in cystic fibrosis patients are associated with increased morbidity and mortality, but virulence factors determining the persistence of the infection in the airways are not well characterized. Using a chronic pulmonary infection model, we previously identified an attenuated mutant with an insertion in a gene encoding an RpoN activator protein, suggesting that RpoN and/or components of the RpoN regulon play a role in B. cenocepacia virulence. In this study, we demonstrate that a functional rpoN gene is required for bacterial motility and biofilm formation in B. cenocepacia K56-2. Unlike other bacteria, RpoN does not control flagellar biosynthesis, as evidenced by the presence of flagella in the rpoN mutant. We also demonstrate that, in macrophages, the rpoN mutant is rapidly trafficked to lysosomes while intracellular wild-type B. cenocepacia localizes in bacterium-containing vacuoles that exhibit a pronounced delay in phagolysosomal fusion. Rapid trafficking to the lysosomes is also associated with the release of red fluorescent protein into the vacuolar lumen, indicating loss of bacterial cell envelope integrity. Although a role for RpoN in motility and biofilm formation has been previously established, this study is the first demonstration that the RpoN regulon in B. cenocepacia is involved in delaying phagolysosomal fusion, thereby prolonging bacterial intracellular survival within macrophages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation of the MET oncogenic pathway has been implicated in the development of aggressive cancers that are difficult to treat with current chemotherapies. This has led to an increased interest in developing novel therapies that target the MET pathway. However, most existing drug modalities are confounded by their inability to specifically target and/or antagonize this pathway. Anticalins, a novel class of monovalent small biologics, are hypothesized to be "fit for purpose" for developing highly specific and potent antagonists of cancer pathways. Here, we describe a monovalent full MET antagonist, PRS-110, displaying efficacy in both ligand-dependent and ligand-independent cancer models. PRS-110 specifically binds to MET with high affinity and blocks hepatocyte growth factor (HGF) interaction. Phosphorylation assays show that PRS-110 efficiently inhibits HGF-mediated signaling of MET receptor and has no agonistic activity. Confocal microscopy shows that PRS-110 results in the trafficking of MET to late endosomal/lysosomal compartments in the absence of HGF. In vivo administration of PRS-110 resulted in significant, dose-dependent tumor growth inhibition in ligand-dependent (U87-MG) and ligand-independent (Caki-1) xenograft models. Analysis of MET protein levels on xenograft biopsy samples show a significant reduction in total MET following therapy with PRS-110 supporting its ligand-independent mechanism of action. Taken together, these data indicate that the MET inhibitor PRS-110 has potentially broad anticancer activity that warrants evaluation in patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A subset of proteins predominantly associated with early endosomes or implicated in clathrin-mediated endocytosis can shuttle between the cytoplasm and the nucleus. Although the endocytic functions of these proteins have been extensively studied, much less effort has been expended in exploring their nuclear roles. Membrane trafficking proteins can affect signalling and proliferation and this can be achieved either at a nuclear or endocytic level. Furthermore, some proteins, such as Huntingtin interacting protein 1, are known as cancer biomarkers. This review will highlight the limits of our understanding of their nuclear functions and the relevance of this to signalling and oncogenesis.