240 resultados para Laboratory diagnosis


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experiments undertaken at the Rutherford Appleton Laboratory to produce X-ray lasing over the 5-30 nm wavelength range are reviewed. The efficiency of lasing is optimized when the main pumping pulse interacts with a preformed plasma. Experiments using double 75-ps pulses and picosecond pulses superimposed on 300-ps background pulses are described. The use of travelling wave pumping with the approximately picosecond pulse experiments is necessary as the gain duration becomes comparable to the time for the X-ray laser pulse to propagate along the target length. Results from a model taking account of laser saturation and deviations from the speed of light c of the travelling wave and X-ray laser group velocity are presented. We show that X-ray laser pulses as short as 2-3 ps can be produced with optical pumping pulses of approximate to1-ps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lung cancer is the most common cause of cancer death. The conventional method of confirming the diagnosis is bronchoscopy, inspecting the airways of the patient with a fiber optic endoscope. A number of studies have shown that Raman spectroscopy can diagnose lung cancer in vitro. In this study, Raman spectra were obtained from ex vivo normal and malignant lung tissue using a minifiber optic Raman probe suitable for insertion into the working channel of a bronchoscope. Shifted subtracted Raman spectroscopy was used to reduce the fluorescence from the lung tissue. Using principal component analysis with a leave-one-out analysis, the tissues were classified accurately. This novel technique has the potential to obtain Raman spectra from tumors from patients with lung cancer in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces an automated computer- assisted system for the diagnosis of cervical intraepithelial neoplasia (CIN) using ultra-large cervical histological digital slides. The system contains two parts: the segmentation of squamous epithelium and the diagnosis of CIN. For the segmentation, to reduce processing time, a multiresolution method is developed. The squamous epithelium layer is first segmented at a low (2X) resolution. The boundaries are further fine tuned at a higher (20X) resolution. The block-based segmentation method uses robust texture feature vectors in combination with support vector machines (SVMs) to perform classification. Medical rules are finally applied. In testing, segmentation using 31 digital slides achieves 94.25% accuracy. For the diagnosis of CIN, changes in nuclei structure and morphology along lines perpendicular to the main axis of the squamous epithelium are quantified and classified. Using multi-category SVM, perpendicular lines are classified into Normal, CIN I, CIN II, and CIN III. The robustness of the system in term of regional diagnosis is measured against pathologists' diagnoses and inter-observer variability between two pathologists is considered. Initial results suggest that the system has potential as a tool both to assist in pathologists' diagnoses, and in training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-flammability of ionic liquids (ILs) is often highlighted as a safety advantage of ILs over volatile organic compounds (VOCs), but the fact that many ILs are not flammable themselves does not mean that they are safe to use near fire and/or heat sources; a large group of ILs ( including commercially available ILs) are combustible due to the nature of their positive heats of formation, oxygen content, and decomposition products.