64 resultados para Lung cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesenchymal stromal cells (MSC) have been reported to improve bacterial clearance in pre-clinical models of Acute Respiratory Distress Syndrome (ARDS) and sepsis. The mechanism of this effect is not fully elucidated yet. The primary objective of this study was to investigate the hypothesis that the anti-microbial effect of MSC in vivo depends on their modulation of macrophage phagocytic activity which occurs through mitochondrial transfer. We established that selective depletion of alveolar macrophages (AM) with intranasal (IN) administration of liposomal clodronate resulted in complete abrogation of MSC anti-microbial effect in the in vivo model of E.coli pneumonia. Furthermore, we showed that MSC administration was associated with enhanced AM phagocytosis in vivo. We showed that direct co-culture of MSC with monocyte-derived macrophages (MDMs) enhanced their phagocytic capacity. By fluorescent imaging and flow cytometry we demonstrated extensive mitochondrial transfer from MSC to macrophages which occurred at least partially through TNT-like structures. We also detected that lung macrophages readily acquire MSC mitochondria in vivo, and macrophages which are positive for MSC mitochondria display more pronounced phagocytic activity. Finally, partial inhibition of mitochondrial transfer through blockage of TNT formation by MSC resulted in failure to improve macrophage bioenergetics and complete abrogation of the MSC effect on macrophage phagocytosis in vitro and the anti-microbial effect of MSC in vivo.

Collectively, this work for the first time demonstrates that mitochondrial transfer from MSC to innate immune cells leads to enhancement in phagocytic activity and reveals an important novel mechanism for the anti-microbial effect of MSC in ARDS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Detection of the ALK rearrangement in a solid tumor gives these patients the option of crizotinib as an oral form of anticancer treatment. The current test of choice is fluorescence in situ hybridization (FISH), but various cheaper and more convenient immunohistochemical (IHC) assays have been proposed as alternatives. 
Methods: Fifteen FISH-positive cases from patients, seven with data on crizotinib therapy and clinical response, were evaluated for the presence of ALK protein using three different commercially available antibodies: D5F3, using the proprietary automated system (Ventana), ALK1 (Dako), and 5A4 (Abcam). A further 14 FISH-negative and three uncertain (<15% rearrangement detected) cases were also retrieved. Of the total 32 specimens, 17 were excisions and 15 were computed tomography-guided biopsies or cytological specimens. All three antibodies were applied to all cases. Antibodies were semiquantitatively scored on intensity, and the proportion of malignant cells stained was documented. Cutoffs were set by receiver operating curve analysis for positivity to optimize correct classification. 
Results: All three IHC assays were 100% specific but sensitivity did vary: D5F3 86%, ALK 79%, 5A4 71%. Intensity was the most discriminating measure overall, with a combination of proportion and intensity not improving the test. No FISH-negative IHC-positive cases were seen. Two FISH-positive cases were negative with all three IHC assays. One of these had been treated with crizotinib and had failed to show clinical response. The other harbored a second driving mutation in the EGFR gene.
Conclusions: IHC with all three antibodies is especially highly specific (100%) although variably sensitive (71%-86%), specifically in cases with scanty material. D5F3 assay was most sensitive in these latter cases. Occasional cases are IHC-positive but FISH-negative, suggesting either inaccuracy of one assay or occasional tumors with ALK rearrangement that do not express high levels of ALK protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resistance to radiotherapy due to insufficient cancer cell death is a significant cause of treatment failure in non-small cell lung cancer (NSCLC). The endogenous caspase-8 inhibitor, FLIP, is a critical regulator of cell death that is frequently overexpressed in NSCLC and is an established inhibitor of apoptotic cell death induced via the extrinsic death receptor pathway. Apoptosis induced by ionizing radiation (IR) has been considered to be mediated predominantly via the intrinsic apoptotic pathway; however, we found that IR-induced apoptosis was significantly attenuated in NSCLC cells when caspase-8 was depleted using RNA interference (RNAi), suggesting involvement of the extrinsic apoptosis pathway. Moreover, overexpression of wild-type FLIP, but not a mutant form that cannot bind the critical death receptor adaptor protein FADD, also attenuated IR-induced apoptosis, confirming the importance of the extrinsic apoptotic pathway as a determinant of response to IR in NSCLC. Importantly, when FLIP protein levels were down-regulated by RNAi, IR-induced cell death was significantly enhanced. The clinically relevant histone deacetylase (HDAC) inhibitors vorinostat and entinostat were subsequently found to sensitize a subset of NSCLC cell lines to IR in a manner that was dependent on their ability to suppress FLIP expression and promote activation of caspase-8. Entinostat also enhanced the anti-tumor activity of IR in vivo. Therefore, FLIP down-regulation induced by HDAC inhibitors is a potential clinical strategy to radio-sensitize NSCLC and thereby improve response to radiotherapy. Overall, this study provides the first evidence that pharmacological inhibition of FLIP may improve response of NCSLC to IR.