68 resultados para SYLVATIC MAMMALS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Causes of late Quaternary extinctions of large mammals (" megafauna") continue to be debated, especially for continental losses, because spatial and temporal patterns of extinction are poorly known. Accurate latest appearance dates (LADs) for such taxa are critical for interpreting the process of extinction. The extinction of woolly mammoth and horse in northwestern North America is currently placed at 15,000-13,000 calendar years before present (yr BP), based on LADs from dating surveys of macrofossils (bones and teeth). Advantages of using macrofossils to estimate when a species became extinct are offset, however, by the improbability of finding and dating the remains of the last-surviving members of populations that were restricted in numbers or con-fined to refugia. Here we report an alternative approach to detect 'ghost ranges' of dwindling populations, based on recovery of ancient DNA from perennially frozen and securely dated sediments (sedaDNA). In such contexts, sedaDNA can reveal the molecular presence of species that appear absent in the macrofossil record. We show that woolly mammoth and horse persisted in interior Alaska until at least 10,500 yr BP, several thousands of years later than indicated from macrofossil surveys. These results contradict claims that Holocene survival of mammoths in Beringia was restricted to ecologically isolated high-latitude islands. More importantly, our finding that mammoth and horse overlapped with humans for several millennia in the region where people initially entered the Americas challenges theories that megafaunal extinction occurred within centuries of human arrival or were due to an extraterrestrial impact in the late Pleistocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cells respond to different types of stress by inhibition of protein synthesis and subsequent assembly of stress granules (SGs), cytoplasmic aggregates that contain stalled translation preinitiation complexes. Global translation is regulated through the translation initiation factor eukaryotic initiation factor 2a (eIF2a) and the mTOR pathway. Here we identify cold shock as a novel trigger of SG assembly in yeast and mammals. Whereas cold shock-induced SGs take hours to form, they dissolve within minutes when cells are returned to optimal growth temperatures. Cold shock causes eIF2a phosphorylation through the kinase PERK in mammalian cells, yet this pathway is not alone responsible for translation arrest and SG formation. In addition, cold shock leads to reduced mitochondrial function, energy depletion, concomitant activation of AMP-activated protein kinase (AMPK), and inhibition of mTOR signaling. Compound C, a pharmacological inhibitor of AMPK, prevents the formation of SGs and strongly reduces cellular survival in a translation-dependent manner. Our results demonstrate that cells actively suppress protein synthesis by parallel pathways, which induce SG formation and ensure cellular survival during hypothermia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The common liver fluke, Fasciola hepatica, is a parasite of mammals. In the western world its effects are largely felt on agriculture where infection of cows, sheep and other farm animals is estimated to cause millions of dollars ofif financial losses. In the developing world, the problem is even more serious with an estimated 7 million infected people and many millions more at risk of infection. Calcium signalling is of key importance in all eukaryotic species and recent discoveries of novel types of calcium binding proteins in liver flukes (and related trematodes) suggest that there may be calcium signalling processes which are unique to this group of organisms. If so, these pathways may provide potential targets for the design of novel anthelmintic drugs. Here, we review three main groups of F. hepatica calcium binding proteins: the FH8 family, the calmodulin family (FhCaM1, FhCaM2 and FhCaM3) and the EF-hand/dynein light chain family (FH22, FhCaBP3, FhCaBP4). Considerable information has been gathered on the sequences, predicted structures and biochemical properties of these molecules. The challenge now is to understand their functions in the organism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Eurasian otter (Lutra lutra L.) is a top predator in aquatic systems and plays an important role in ecosystem functioning. However, it has undergone dramatic declines throughout Europe as a result of environmental degradation. We examine the putative role of the otter as a bioindicator in Ireland which remains a stronghold for the species and affords a unique opportunity to examine variation in its ecological niche. We describe diet, using spraint contents, along rivers during 2010 and conduct a review and quantitative meta-analysis of the results of a further 21 studies. We aimed to assess variation in otter diet in relation to river productivity, a proxy for natural nutrification and anthropogenic eutrophication, and availability of salmonid prey (Salmo trutta and Salmo salar), to test the hypothesis that otter diet is related to environmental quality. Otter diet did not vary with levels of productivity or availability of salmonids whilst Compositional Analysis suggested there was no selection of salmonid over non-salmonid fish. There was a distinct niche separation between riverine and lacustrine systems, the latter being dominated by Atlantic eel (Anguilla anguilla). Otters are opportunistic and may take insects, freshwater mussels, birds, mammals and even fruit. Otters living along coasts have a greatest niche breath than those in freshwater systems which encompasses a wide variety of intertidal prey though pelagic fish are rarely taken. It is concluded that the ability of the otter to feed on a wide diversity of prey taxa and the strong influence of habitat type, renders it a poor bioindicator of environmental water quality. It seems likely that the plasticity of the habitat and dietary niche of otters, and the extent of suitable habitat, may have sustained populations in Ireland despite intensification of agriculture during the 20th century.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amphibian skin secretions contain a plethora of pharmacologically-active substances and represent established sources of bioactive peptides, including tachykinins. Tachykinins are one of the most widely-studied peptide families in animals and are found in neuroendocrine tissues from the lowest vertebrates to mammals. They are characterized by the presence of a highly-conserved C-terminal pentapeptide amide sequence motif (-FXGLM-amide) that also constitutes the bioactive core of the peptide. Amidation of the C-terminal methioninyl residue appears to be mandatory in the expression of biological activity. Here, we describe the isolation, characterization and molecular cloning of a novel tachykinin named ranachensinin, from the skin secretion of the Chinese brown frog, Rana chensinensis. This peptide, DDTSDRSN QFIGLM-amide, contains the classical C-terminal pentapeptide amide motif in its primary structure and an Ile (I) residue in the variable X position. A synthetic replicate of ranachensinin, synthesized by solid-phase Fmoc chemistry, was found to contract the smooth muscle of rat urinary bladder with an EC50 of 20.46 nM. However, in contrast, it was found to be of low potency in contraction of rat ileum smooth muscle with an EC50 of 2.98 µM. These data illustrate that amphibian skin secretions continue to provide novel bioactive peptides with selective effects on functional targets in mammalian tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Achieving a clearer picture of categorial distinctions in the brain is essential for our understanding of the conceptual lexicon, but much more fine-grained investigations are required in order for this evidence to contribute to lexical research. Here we present a collection of advanced data-mining techniques that allows the category of individual concepts to be decoded from single trials of EEG data. Neural activity was recorded while participants silently named images of mammals and tools, and category could be detected in single trials with an accuracy well above chance, both when considering data from single participants, and when group-training across participants. By aggregating across all trials, single concepts could be correctly assigned to their category with an accuracy of 98%. The pattern of classifications made by the algorithm confirmed that the neural patterns identified are due to conceptual category, and not any of a series of processing-related confounds. The time intervals, frequency bands and scalp locations that proved most informative for prediction permit physiological interpretation: the widespread activation shortly after appearance of the stimulus (from 100. ms) is consistent both with accounts of multi-pass processing, and distributed representations of categories. These methods provide an alternative to fMRI for fine-grained, large-scale investigations of the conceptual lexicon. © 2010 Elsevier Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both embodied and symbolic accounts of conceptual organization would predict partial sharing and partial differentiation between the neural activations seen for concepts activated via different stimulus modalities. But cross-participant and cross-session variability in BOLD activity patterns makes analyses of such patterns with MVPA methods challenging. Here, we examine the effect of cross-modal and individual variation on the machine learning analysis of fMRI data recorded during a word property generation task. We present the same set of living and non-living concepts (land-mammals, or work tools) to a cohort of Japanese participants in two sessions: the first using auditory presentation of spoken words; the second using visual presentation of words written in Japanese characters. Classification accuracies confirmed that these semantic categories could be detected in single trials, with within-session predictive accuracies of 80-90%. However cross-session prediction (learning from auditory-task data to classify data from the written-word-task, or vice versa) suffered from a performance penalty, achieving 65-75% (still individually significant at p « 0.05). We carried out several follow-on analyses to investigate the reason for this shortfall, concluding that distributional differences in neither time nor space alone could account for it. Rather, combined spatio-temporal patterns of activity need to be identified for successful cross-session learning, and this suggests that feature selection strategies could be modified to take advantage of this.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Host defence peptides (HDPs) are expressed throughout the animal and plant kingdoms. They have multifunctional roles in the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs) that exhibit similar structural and biochemical characteristics to the HDPs. Here, we have analyzed the functional activities of four HDMs derived from Schistosoma mansoni and Fasciola hepatica and compared them to human, mouse, bovine and sheep HDPs. Unlike the mammalian HDPs the helminth-derived HDMs show no antimicrobial activity and are non-cytotoxic to mammalian cells (macrophages and red blood cells). However, both the mammalian- and helminth-derived peptides suppress the activation of macrophages by microbial stimuli and alter the response of B cells to cytokine stimulation. Therefore, we hypothesise that HDMs represent a novel family of HDPs that evolved to regulate the immune responses of their mammalian hosts by retaining potent immune modulatory properties without causing deleterious cytotoxic effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Daily and seasonal variations in physiological characteristics of mammals can be considered adaptations to temporal habitat variables. Across different ecosystems, physiological adjustments are expected to be sensitive to different environmental signals such as changes in photoperiod, temperature or water and food availability; the relative importance of a particular signal being dependent on the ecosystem in question. Energy intake, oxygen consumption (VO) and body temperature (T) daily rhythms were compared between two populations of the broad-toothed field mouse Apodemus mystacinus, one from a Mediterranean and another from a sub-Alpine ecosystem. Mice were acclimated to short-day (SD) 'winter' and long-day (LD) 'summer' photoperiods under different levels of salinity simulating osmotic challenges. Mediterranean mice had higher VO values than sub-Alpine mice. In addition, mice exposed to short days had higher VO values when given water with a high salinity compared with mice exposed to long days. By comparison, across both populations, increasing salinity resulted in a decreased T in SD- but not in LD-mice. Thus, SD-mice may conserve energy by decreasing T during ('winter') conditions which are expected to be cool, whereas LD-mice might do the opposite and maintain a higher T during ('summer') conditions which are expected to be warm. LD-mice behaved to reduce energy expenditure, which might be considered a useful trait during 'summer' conditions. Overall, increasing salinity was a clear signal for Mediterranean-mice with resultant effects on VO and T daily rhythms but had less of an effect on sub-Alpine mice, which were more responsive to changes in photoperiod. Results provide an insight into how different populations respond physiologically to various environmental challenges.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conserved habenular neural circuit relays cognitive information from the forebrain into the ventral mid- and hindbrain. In zebrafish, the bilaterally formed habenulae in the dorsal diencephalon are made up of the asymmetric dorsal and symmetric ventral habenular nuclei, which are homologous to the medial and lateral nuclei respectively, in mammals. These structures have been implicated in various behaviors related to the serotonergic/dopaminergic neurotransmitter system. The dorsal habenulae develop adjacent to the medially positioned pineal complex. Their precursors differentiate into two main neuronal subpopulations which differ in size across brain hemispheres as signals from left-sided parapineal cells influence their differentiation program. Unlike the dorsal habenulae and despite their importance, the ventral habenulae have been poorly studied. It is not known which genetic programs underlie their development and why they are formed symmetrically, unlike the dorsal habenulae. A main reason for this lack of knowledge is that the vHb origin has remained elusive to date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Animals can call on a multitude of sensory information to orient and navigate. In some cases they may calibrate these cues against each other to establish the most accurate information available. One such cue is the pattern of polarized light in the sky, which may be used as a geographical reference to calibrate other cues in the compass mechanism. Mammals, however, have not been shown to use this cue, even though they do calibrate a magnetic compass with sunset. In this paper we demonstrate that bats use polarization cues at sunset to calibrate a magnetic compass, subsequently used for orientation during a homing experiment. It is thus the only mammal known so far to make use of the polarization pattern in the sky. This is an intriguing finding as currently there is no clear understanding of how this cue is perceived in this taxon and has general implications for the sensory biology of mammalian vision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bradykinin-related peptides (BRPs) are significant components of the defensive skin secretions of many anuran amphibians, and these secretions represent the source of the most diverse spectrum of such peptides so far encountered in nature. Of the many families of bioactive peptides that have been identified from this source, the BRPs uniquely appear to represent homologues of counterparts that have specific distributions and receptor targets within discrete vertebrate taxa, ranging from fishes through mammals. Their broad spectra of actions, including pain and inflammation induction and smooth muscle effects, make these peptides ideal weapons in predator deterrence. Here, we describe a novel 12-mer BRP (RVALPPGFTPLR-RVAL-(L1, T6, L8)-bradykinin) from the skin secretion of the Fujian large-headed frog (Limnonectes fujianensis). The C-terminal 9 residues of this BRP (-LPPGFTPLR) exhibit three amino acid substitutions (L/R at Position 1, T/S at Position 6 and L/F at Position 8) when compared to canonical mammalian bradykinin (BK), but are identical to the kinin sequence present within the cloned kininogen-2 from the Chinese soft-shelled turtle (Pelodiscus sinensis) and differ from that encoded by kininogen-2 of the Tibetan ground tit (Pseudopodoces humilis) at just a single site (F/L at Position 8). These data would imply that the novel BRP is an amphibian defensive agent against predation by sympatric turtles and also that the primary structure of the avian BK, ornithokinin (RPPGFTPLR), is not invariant within this taxon. Synthetic RVAL-(L1, T6, L8)-bradykinin was found to be an antagonist of BK-induced rat tail artery smooth muscle relaxation acting via the B2-receptor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

All mammals lose their ability to produce lactase (β-galactosidase), the enzyme that cleaves lactose into galactose and glucose, after weaning. The prevalence of lactase deficiency (LD) spans from 2 to 15% among northern Europeans, to nearly 100% among Asians. Following lactose consumption, people with LD often experience gastrointestinal symptoms such as abdominal pain, bowel distension, cramps and flatulence, or even systemic problems such as headache, loss of concentration and muscle pain. These symptoms vary depending on the amount of lactose ingested, type of food and degree of intolerance. Although those affected can avoid the uptake of dairy products, in doing so, they lose a readily available source of calcium and protein. In this work, gels obtained by complexation of Tetronic 90R4 with α-cyclodextrin loaded with β-galactosidase are proposed as a way to administer the enzyme immediately before or with the lactose-containing meal. Both molecules are biocompatible, can form gels in situ, and show sustained erosion kinetics in aqueous media. The complex was characterized by FTIR that evidenced an inclusion complex between the polyethylene oxide block and α-cyclodextrin. The release profiles of β-galactosidase from two different matrices (gels and tablets) of the in situ hydrogels have been obtained. The influence of the percentage of Tetronic in media of different pH was evaluated. No differences were observed regarding the release rate from the gel matrices at pH 6 (t50 = 105 min). However, in the case of the tablets, the kinetics were faster and they released a greater amount of 90R4 (25%, t50 = 40–50 min). Also, the amount of enzyme released was higher for mixtures with 25% Tetronic. Using suitable mathematical models, the corresponding kinetic parameters have been calculated. In all cases, the release data fit quite well to the Peppas–Sahlin model equation, indicating that the release of β-galactosidase is governed by a combination of diffusion and erosion processes. It has been observed that the diffusion mechanism prevails over erosion during the first 50 minutes, followed by continued release of the enzyme due to the disintegration of the matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quarter of all lagomorphs (pikas, rabbits, hares and jackrabbits) are threatened with extinction, including several genera that contain only one species. The number of species in a genus correlates with extinction risk in lagomorphs, but not in other mammal groups, and this is concerning because the non-random extinction of small clades disproportionately threatens genetic diversity and phylogenetic history. Here, we use phylogenetic analyses to explore the properties of the lagomorph phylogeny and test if variation in evolution, biogeography and ecology between taxa explains current patterns of diversity and extinction risk. Threat status was not related to body size (and, by inference, its biological correlates), and there was no phylogenetic signal in extinction risk. We show that the lagomorph phylogeny has a similar clade-size distribution to other mammals, and found that genus size was unrelated to present climate, topography, or geographic range size. Extinction risk was greater in areas of higher human population density and negatively correlated with anthropogenically modified habitat. Consistent with this, habitat generalists were less likely to be threatened. Our models did not predict threat status accurately for taxa that experience region-specific threats. We suggest that pressure from human populations is so severe and widespread that it overrides ecological, biological, and geographic variation in extant lagomorphs.