56 resultados para SUBUNIT RIBOSOMAL-RNA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 67LR (67 kDa laminin receptor) is a cell-surface receptor with high affinity for its primary ligand. Its role as a laminin receptor makes it an important molecule both in cell adhesion to the basement membrane and in signalling transduction following this binding event. The protein also plays critical roles in the metastasis of tumour cells. Isolation of the protein from either normal or cancerous cells results in a product with an approx. molecular mass of 67 kDa. This protein is believed to be derived from a smaller precursor, the 37LRP (37 kDa laminin receptor precursor). However, the precise mechanism by which cytoplasmic 37LRP becomes cell-membrane-embedded 67LR is unclear. The process may involve post-translational fatty acylation of the protein combined with either homo- or hetero-dimerization, possibly with a galectin-3-epitope-containing partner. Furthermore, it has become clear that acting as a receptor for laminin is not the only function of this protein. 67LR also acts as a receptor for viruses, such as Sindbis virus and dengue virus, and is involved with internalization of the prion protein. Interestingly, unmodified 37LRP is a ribosomal component and homologues of this protein are found in all five kingdoms. In addition, it appears to be strongly associated with histones in the eukaryotic cell nucleus, although the precise role of these interactions is not clear. Here we review the current understanding of the structure and function of this molecule, as well as highlighting areas requiring further research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formalin fixation and paraffin embedding (FFPE) is the most commonly used method worldwide for tissue storage. This method preserves the tissue integrity but causes extensive damage to nucleic acids stored within the tissue. As methods for measuring gene expression such as RT-PCR and microarray are adopted into clinical practice there is an increasing necessity to access the wealth of information locked in the Formalin fixation and paraffin embedding archives. This paper reviews the progress in this field and discusses the unique opportunities that exist for the application of these techniques in the development of personalized medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of genes expressed in preparasitic second-stage juveniles (J2) of plant-parasitic nematodes appear to be vulnerable to RNA interference (RNAi) in vitro by coupling double-stranded (ds)RNA soaking with the artificial stimulation of pharyngeal pumping. Also, there is mounting evidence that the in planta generation of nematode-specific double-stranded RNAs (dsRNAs) has real utility in the control of these pests. Although neuronally-expressed genes in Caenorhabditis elegans are commonly refractory to RNAi, we have discovered that neuronally-expressed genes in plant-parasitic nematodes are highly susceptible to RNAi and that silencing can be induced by simple soaking procedures without the need for pharyngeal stimulation. Since most front-line anthelmintics that are used for the control of nematode parasites of animals and humans act to disrupt neuromuscular coordination, we argue that intercellular signalling processes associated with neurons have much appeal as targets for transgenic plant-based control strategies for plant-parasitic nematodes. FMRFamide-like peptides (FLPs) are a large family of neuropeptides which are intimately associated with neuromuscular regulation, and our studies on flp gene function in plant-parasitic nematodes have revealed that their expression is central to coordinated locomotory activities. We propose that the high level of conservation in nervous systems across nematodes coupled with the RNAi-susceptibility of neuronally-expressed genes in plant-parasitic nematodes provides a valuable research tool which could be used to interrogate neuronal signalling processes in nematodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oestrogen produces diverse biological effects through binding to the oestrogen receptor (ER)(1). The ER is a steroid hormone nuclear receptor, which, when bound to oestrogen, modulates the transcriptional activity of target genes(2). Controversy exists, however, concerning whether ER has a role outside the nucleus(3), particularly in mediating the cardiovascular protective effects of oestrogen(4). Here we show that the ER isoform, ER alpha, binds in a ligand-dependent manner to the p85 alpha regulatory subunit of phosphatidylinositol-3-OH kinase (PI(3)K). Stimulation with oestrogen increases ER alpha-associated PI(3)K activity, leading to the activation of protein kinase B/Akt and endothelial nitric oxide synthase (eNOS). Recruitment and activation of PI(3)K by ligand-bound ERa are independent of gene transcription, do not involve phosphotyrosine adapter molecules or src-homology domains of p85 alpha, and extend to other steroid hormone receptors. Mice treated with oestrogen show increased eNOS activity and decreased vascular leukocyte accumulation after ischaemia and reperfusion injury. This vascular protective effect of oestrogen was abolished in the presence of PI(3)K or eNOS inhibitors. Our findings define a physiologically important non-nuclear oestrogen-signalling pathway involving the direct interaction of ERa with PI(3)K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclin D1 expression represents one of the key mitogen-regulated events during the G1 phase of the cell cycle, whereas Cyclin D1 overexpression is frequently associated with human malignancy. Here, we describe a novel mechanism regulating Cyclin D1 levels. We find that SNIP1, previously identified as a regulator of Cyclin D1 expression, does not, as previously thought, primarily function as a transcriptional coactivator for this gene. Rather, SNIP1 plays a critical role in cotranscriptional or posttranscriptional Cyclin D1 mRNA stability. Moreover, we show that the majority of nucleoplasmic SNIP1 is present within a previously undescribed complex containing SkIP, THRAP3, BCLAF1, and Pinin, all proteins with reported roles in RNA processing and transcriptional regulation. We find that this complex, which we have termed the SNIP1/SkIP–associated RNA-processing complex, is coordinately recruited to both the 3' end of the Cyclin D1 gene and Cyclin D1 RNA. Significantly, SNIP1 is required for the further recruitment of the RNA processing factor U2AF65 to both the Cyclin D1 gene and RNA. This study shows a novel mechanism regulating Cyclin D1 expression and offers new insight into the role of SNIP1 and associated proteins as regulators of proliferation and cancer.