257 resultados para Percutaneous Peptide Immunization
Resumo:
Background: Metabolism by peptidases plays an important role in modulating the levels of biologically-active neuropeptides. The metabolism of the anti-inflammatory neuropeptide calcitonin gene-related peptide (GCRP), but not the pro-inflammatory neuropeptides substance P (SP) and neurokinin A (NKA) by components of the gingival crevicular fluid (GCF), could potentiate the inflammatory process in periodontitis.
Resumo:
Antimicrobial peptides play an important role in host defence, particularly in the oral cavity where there is constant challenge by microorganisms. The a-defensin antimicrobial peptides comprise 30–50% of the total protein in the azurophilic granules of human neutrophils, the most abundant of which is human neutrophil peptide 1 (HNP-1). Despite its antimicrobial activity, a limiting factor in the potential therapeutic use of HNP-1 is its chemical synthesis with the correct disulphide topology. In the present study, we synthesised a range of truncated defensin analogues lacking disulphide bridges. All the analogues were modelled on the C-terminal region of HNP-1 and their antimicrobial activity was tested against a range of microorganisms, including oral pathogens. Although there was variability in the antimicrobial activity of the truncated analogues synthesised, a truncated peptide named 2Abz23S29 displayed a broad spectrum of antibacterial activity, effectively killing all the bacterial strains tested. The finding that truncated peptides, modelled on the C-terminal ß-hairpin region of HNP-1 but lacking disulphide bridges, display antimicrobial activity could aid their potential use in therapeutic interventions.
Resumo:
Gene gun immunization, i.e., bombardment of skin with DNA-coated particles, is an efficient method for the administration of DNA vaccines. Direct transfection of APC or cross-presentation of exogenous Ag acquired from transfected nonimmune cells enables MHC-I-restricted activation of CD8(+) T cells. Additionally, MHC-II-restricted presentation of exogenous Ag activates CD4(+) Th cells. Being the principal APC in the epidermis, Langerhans cells (LC) seem ideal candidates to accomplish these functions. However, the dependence on LC of gene gun-induced immune reactions has not yet been demonstrated directly. This was primarily hampered by difficulties to discriminate the contributions of LC from those of other dermal dendritic cells. To address this problem, we have used Langerin-diphtheria toxin receptor knockin mice that allow for selective inducible ablation of LC. LC deficiency, even over the entire duration of experiments, did not affect any of the gene gun-induced immune functions examined, including proliferation of CD4(+) and CD8(+) T cells, IFN-gamma secretion by spleen cells, Ab production, CTL activity, and development of protective antitumor immunity.
Resumo:
The coronavirus main protease, Mpro, is considered a major target for drugs suitable to combat coronavirus infections including the severe acute respiratory syndrome (SARS). In this study, comprehensive HPLC- and FRET-substrate-based screenings of various electrophilic compounds were performed to identify potential Mpro inhibitors. The data revealed that the coronaviral main protease is inhibited by aziridine- and oxirane-2-carboxylates. Among the trans-configured aziridine-2,3-dicarboxylates the Gly-Gly-containing peptide 2c was found to be the most potent inhibitor.
Resumo:
Calcitonin gene-related peptide (CGRP) is an endogenous vasodilator peptide that produces its effects by activation of CGRP(1) and CGRP(2) receptor subtypes, These receptor subtypes are characterized in functional studies using the agonist Cys(Acm)(2,7)-human-alpha-calcitonin gene-related peptide (Cys(ACM)(2,7)-h-alpha-CGRP), which activates CGRP(2) receptors, and the antagonist h-alpha CGRP(8-37) which has a high affinity for CGRP, receptors and a low affinity for CGRP(2) receptors. Our aim was to identify factors that may limit the use of these drugs to characterize CGRP receptor subtypes. We studied CGRP receptors using isolated ring segments of pig coronary and basilar arteries studied in vitro. The affinity of the antagonist h-alpha CGRP(8-37) for inhibiting h-alpha CGRP-induced relaxation of coronary arteries (log(10) of the antagonist equilibrium dissociation constant = -5.33) was determined from Schild plots that had steep slopes. Therefore, we used capsaicin to investigate the role of endogenous CGRP in confounding affinity measurements for h-alpha CGRP(8-37). After capsaicin treatment, the slopes of the Schild plots were not different from one, and a higher affinity of h-CGRP(8-37) in blocking relaxation was obtained (log(10) of the antagonist equilibrium dissociation constant = -6.01). We also investigated the agonist activity of the putative CGRP, receptor selective agonist Cys(Acm)(2,7)-h-alpha-CGRP. We found that maximal relaxation of coronary arteries caused by Cys(Acm)(2,7)-h-alpha CGRP was dependent upon the level of contractile tone induced by KCI. We also determined the K-A for Cys(Acm)(2,7)-h-alpha CGRP and found that the K-A (817 nM) was not significantly different from the EC50 (503 nM) for this drug in causing relaxation, indicating that Cys(Acm)(2,7)-h-alpha CGRP is a partial agonist. Because experimental conditions affect the actions of h-CGRP(8-37) and Cys(Acm)(2,7)-h-alpha CGRP, the conditions must be carefully controlled to reliably identify CGRP receptor subtypes.
Resumo:
A structure-activity study was performed to examine the role of position 14 of human alpha-calcitonin gene-related peptide (h-alpha-CGRP) in activating the CGRP receptor. Interestingly, position 14 of h-alpha-CGRP contains a glycyl residue and is part of an alpha-helix spanning residues 8-18. Analogues [Ala(14)]-h-alpha-CGRP, [Aib(14)]-h-alpha-CGRP, [Asp(14)]-h-alpha-CGRP, [Asn(14)]-h-alpha-CGRP, and [Pro(14)]-h-alpha-CGRP were synthesized by solid phase peptide methodology and purified by RP-HPLC. Secondary structure was measured by circular dichroism spectroscopy. Agonist activities were determined as the analogues' ability to stimulate amylase secretion from guinea pig pancreatic acini and to relax precontracted porcine coronary arteries. Analogues [Ala(1)4]-h-alpha-CGRP, [Aib(14)]-h-alpha-CGRP, [Asp(14)]-h-alpha-CGRP, and [Asn(14)]-h-alpha-CGRP, all containing residues with a high helical propensity in position 14, were potent full agonists compared to h-alpha-CGRP in both tissues. Interestingly, replacement of Gly(14) of h-alpha-CGRP with these residues did not substantially increase the helical content of these analogues. [Pro(14)]-h-alpha-CGRP, predictably, has significantly lower helical content and is a 20-fold less potent agonist on coronary artery, known to contain CGRP-1 receptor subtypes, and an antagonist on pancreatic acini, known to contain CGRP-2 receptor subtypes. In conclusion, the residue in position 14 plays a structural role in stabilizing the alpha-helix spanning residues 8-18. The alpha-helix is crucial for maintaining highly potent agonist effects of h-alpha-CGRP at CGRP receptors. The wide variety of functional groups that can be tolerated in position 14 with no substantial modification of agonist effects suggests the residue in this position is not in contact with the CGRP receptor. [Pro(14)]-h-alpha-CGRP may be a useful pharmacological tool to distinguish between CGRP-1 and CGRP-2 receptor subtypes.