118 resultados para SICKLE CELL DISEASE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

T cell immune responses to central nervous system-derived and other self-antigens are commonly described in both healthy and autoimmune individuals. However, in the case of the human prion protein (PrP), it has been argued that immunologic tolerance is uncommonly robust. Although development of an effective vaccine for prion disease requires breaking of tolerance to PrP, the extent of immune tolerance to PrP and the identity of immunodominant regions of the protein have not previously been determined in humans. We analyzed PrP T cell epitopes both by using a predictive algorithm and by measuring functional immune responses from healthy donors. Interestingly, clusters of epitopes were focused around the area of the polymorphic residue 129, previously identified as an indicator of susceptibility to prion disease, and in the C-terminal region. Moreover, responses were seen to PrP peptide 121-134 containing methionine at position 129, whereas PrP 121-134 [129V] was not immunogenic. The residue 129 polymorphism was also associated with distinct patterns of cytokine response: PrP 128-141 [129M] inducing IL-4 and IL-6 production, which was not seen in response to PrP 128-141 [129V]. Our data suggest that the immunogenic regions of human PrP lie between residue 107 and the C-terminus and that, like with many other central nervous system antigens, healthy individuals carry responses to PrP within the T cell repertoire and yet do not experience deleterious autoimmune reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DIN (diabetic nephropathy) is the leading cause of end-stage renal disease worldwide and develops in 25-40% of patients with Type 1 or Type 2 diabetes mellitus. Elevated blood glucose over long periods together with glomerular hypertension leads to progressive glomerulosclerosis and tubulointerstitial fibrosis in susceptible individuals. Central to the pathology of DIN are cytokines and growth factors such as TGF-beta (transforming growth factor beta) superfamily members, including BMPs (bone morphogenetic protein) and TGF-beta 1, which play key roles in fibrogenic responses of the kidney, including podocyte loss, mesangial cell hypertrophy, matrix accumulation and tubulointerstitial fibrosis. Many of these responses can be mimicked in in vitro models of cells cultured in high glucose. We have applied differential gene expression technologies to identify novel genes expressed in in vitro and in vivo models of DN and, importantly, in human renal tissue. By mining these datasets and probing the regulation of expression and actions of specific molecules, we have identified novel roles for molecules such as Gremlin, IHG-1 (induced in high glucose-1) and CTGF (connective tissue growth factor) in DIN and potential regulators of their bioactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic fibrosis represents the final common pathway in progressive renal disease. Myofibroblasts deposit the constituents of renal scar, thus crippling renal function. It has recently emerged that an important source of these pivotal effector cells is the injured renal epithelium. This review concentrates on the process of epithelial-mesenchymal transition (EMT) and its regulation. The role of the developmental gene, gremlin, which is reactivated in adult renal disease, is the subject of particular focus. This member of the cysteine knot protein superfamily is critical to the process of nephrogenesis but quiescent in normal adult kidney. There is increasing evidence that gremlin expression reactivates in diabetic nephropathy, and in the diseased fibrotic kidney per se. Known to antagonize members of the bone morphogenic protein (BMP) family, gremlin may also act downstream of TGF-beta in induction of EMT. An increased understanding of the extracellular modulation of EMT and, in particular, of the gremlin-BMP axis may result in strategies that can halt or reverse the devastating progression of chronic renal fibrosis. Copyright (c) 2006 S. Karger AG, Basel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract
OBJECTIVES:
Neuropeptide Y (NPY) coordinates inflammation and bone metabolism which are central to the pathogenesis of periodontitis. The present study was designed to determine whether NPY was quantifiable in human gingival crevicular fluid (GCF) and to test the null hypothesis that GCF levels of NPY were the same in periodontal health and disease. A subsidiary aim was to determine the potential functionality of released NPY by detecting the presence of NPY Y1 receptors in gingival tissue.
DESIGN:
The periodontitis group consisted of 20 subjects (10 females and 10 males) mean age 41.4 (S.D. 9.6 years). The control group comprised 20 subjects (10 females and 10 males) mean age 37.4 (S.D. 11.7 years). NPY levels in GCF were measured in periodontal health and disease by radioimmunoassay. NPY Y1 receptor expression in gingival tissue was determined by Western blotting of membrane protein extracts from healthy and inflamed gum.
RESULTS:
Healthy sites from control subjects had significantly higher levels of NPY than diseased sites from periodontitis subjects. NPY Y1 receptor protein was detected in both healthy and inflamed gingival tissue by Western blotting.
CONCLUSIONS:
The significantly elevated levels of NPY in GCF from healthy compared with periodontitis sites suggests a tonic role for NPY, the functionality of which is indicated by the presence of NPY Y1 receptors in local gingival tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Cilostazol improves walking distance in peripheral arterial disease (PAD) patients. The study objectives were to assess the effects of cilostazol on walking distance, followed by the additional assessment of cilostazol on exercise-induced ischaemiaereperfusion injury in such patients.

Methods: PAD patients were prospectively recruited to a double-blinded, placebo-controlled trial. Patients were randomised to receive either cilostazol 100 mg or placebo twice a day. The primary end-point was an improvement in walking distance. Secondary end-points included the assessment of oxygen-derived free-radical generation, antioxidant consumption and other markers of the in?ammatory cascade. Initial and absolute claudication distances (ICDs and ACDs, respectively) were measured on a treadmill. In?ammatory response was assessed before and 30 min post-exercise by measuring lipid hydroperoxide, ascorbate, atocopherol, b-carotene, P-selectin, intracellular and vascular cell-adhesion molecules (I-CAM and V-CAM), thromboxane B2 (TXB2), interleukin-6, interleukin-10, high-sensitive C-reactive protein (hsCRP), albuminecreatinine ratio (ACR) and urinary levels of p75TNF receptor. All tests were performed at baseline and 6 and 24 weeks.

Results: One hundred and six PAD patients (of whom 73 were males) were recruited and successfully randomised from December 2004 to January 2006. Patients who received cilostazol demonstrated a more signi?cant improvement in the mean percentage change from baseline in ACD (77.2% vs. 26.6% at 6 weeks, pZ0.026 and 161.7% vs. 79.0% at 24 weeks, pZ0.048) as compared to the placebo. Cilostazol reduced lipid hydroperoxide levels compared to a placebo-related increase before and after exercise (6 weeks: pre-exercise: 11.8% vs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relapsing fever borreliosis is a multisystemic infection characterized primarily by bacteremia but can extend to the CNS. The incidence of CNS disease manifestations in humans depends on the infecting relapsing fever Borrelia species. In the murine model of Borrelia hermsii infection we found high incidence of distinct signs of CNS disease that ranged from a flaccid tail to complete paralysis of hind limbs. Infiltration of large number of T cells into the spinal cord of B. hermsii-infected mice and the upregulation of MHC class II and CD80 on infiltrating macrophages and on microglial cells suggested a role for T cell and Ag-presenting cell interactions in this pathogenesis. Indeed, B. hermsii infection did not induce CNS disease manifestations in T cell-deficient mice (TCR-ß × d-/-), although it resulted in bacteremia comparable to wild-type (Wt) level. Moreover, the infiltration of immune cells into the spinal cord of TCR-ß × d-/- mice was reduced and the resident microglial cells were not activated. Histopathological analysis of lumbar sections of the spinal cord confirmed severe inflammation in Wt but not in TCR-ß × d-/- mice. Induction of CNS disease was dependent on the B. hermsii strain as well as on the ability of the host to control bacteremia. Mice that are impaired in controlling B. hermsii, such as CD14-/- mice, exhibited more severe CNS disease than Wt mice. This study demonstrates that distinct neurologic disease manifestations develop during relapsing fever and that T cells play a critical role in the induction of neuropathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yersinia pestis is the causative agent of plague, a rapidly fatal infectious disease that has not been eradicated worldwide. The capsular Caf1 protein of Y. pestis is a protective antigen under development as a recombinant vaccine. However, little is known about the specificity of human T cell responses for Caf1. We characterized CD4 T cell epitopes of Caf1 in 'humanized'-HLA-DR1 transgenic mice lacking endogenous MHC class II molecules. Mice were immunized with Caf1 or each of a complete set of overlapping synthetic peptides, and CD4 T cell immunity was measured with respect to proliferative and IFNgamma T cell responses and recognition by a panel of T cell hybridomas, as well as direct determination of binding affinities of Caf1 peptides to purified HLA-DR molecules. Although a number of DR1-restricted epitopes were identified following Caf1 immunization, the response was biased towards a single immunodominant epitope near the C-terminus of Caf1. In addition, potential promiscuous epitopes, including the immunodominant epitope, were identified by their ability to bind multiple common HLA alleles, with implications for the generation of multivalent vaccines against plague for use in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bradykinin and related peptides are found in the defensive skin secretions of many frogs and toads. While the physiological roles of bradykinin-related peptides in sub-mammalian vertebrates remains obscure, in mammals, including humans, canonical bradykinin mediates a multitude of biological effects including the proliferation of many types of cancer cell. Here we have examined the effect of the bradykinin B2 receptor antagonist peptide, kinestatin, originally isolated by our group from the skin secretion of the giant fire-bellied toad, Bombina maxima, on the proliferation of the human prostate cancer cell lines, PC3, DU175 and LnCAP. The bradykinin receptor status of all cell lines investigated was established through PCR amplification of transcripts encoding both B1 and B2 receptor subtypes. Following this demonstration, all cell lines were grown in the presence or absence of kinestatin and several additional bradykinin receptor antagonists of amphibian skin origin and the effects on proliferation of the cell lines was investigated using the MTT assay and by counting of the cells in individual wells of 96-well plates. All of the amphibian skin secretion-derived bradykinin receptor antagonists inhibited proliferation of all of the prostate cancer lines investigated in a dose-dependent manner. In addition, following incubation of peptides with each cell line and analysis of catabolites by mass spectrometry, it was found that bradykinin was highly labile and each antagonist was highly stable under the conditions employed. Bradykinin signalling pathways are thus worthy of further investigation in human prostate cancer cell lines and the evidence presented here would suggest the testing of efficacy in animal models of prostate cancer as a positive outcome could lead to a drug development programme for the treatment of this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Renal cell carcinoma patients respond poorly to conventional chemotherapy, this unresponsiveness may be attributable to multidrug resistance (MDR). The mechanisms of MDR in renal cancer are not fully understood and the specific contribution of ABC transporter proteins which have been implicated in the chemoresistance of various cancers has not been fully defined in this disease. Methods In this retrospective study the expression of two of these transporter efflux pumps, namely MDR-1 P-gp (ABCB1) and MRP-1 (ABCC1) were studied by immunohistochemistry in archival material from 95 renal cell carcinoma patients. Results In the first study investigating MDR-1 P-gp and MRP-1 protein expression patterns in renal cell carcinoma patients, high levels of expression of both efflux pumps are observed with 100% of tumours studied showing MDR-1 P-gp and MRP-1 positivity. Conclusion Although these findings do not prove a causal role, the high frequency of tumours expressing these efflux pumps suggests that they may be important contributors to the chemoresistance of this tumour type.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ß-site AßPP cleaving enzyme 1 (BACE1) catalyses the rate-limiting step for production of amyloid-ß (Aß) peptides, involved in the pathological cascade underlying Alzheimer's disease (AD). Elevated BACE1 protein levels and activity have been reported in AD postmortem brains. Our study explored whether this was due to elevated BACE1 mRNA expression. RNA was prepared from five brain regions in three study groups: controls, individuals with AD, and another neurodegenerative disease group affected by either Parkinson's disease (PD) or dementia with Lewy bodies (DLB). BACE1 mRNA levels were measured using quantitative realtime PCR (qPCR) and analyzed by qbasePLUS using validated stably-expressed reference genes. Expression of glial and neuronal markers (glial fibrillary acidic protein (GFAP) and neuron-specific enolase (NSE), respectively) were also analyzed to quantify the changing activities of these cell populations in the tissue. BACE1 mRNA levels were significantly elevated in medial temporal and superior parietal gyri, compared to the PD/DLB and/or control groups. Superior frontal gryus BACE1 mRNA levels were significantly increased in the PD/DLB group, compared to AD and control groups. For the AD group, BACE1 mRNA changes were analyzed in the context of the reduced NSE mRNA, and strongly increased GFAP mRNA levels apparent as AD progressed (indicated by Braak stage). This analysis suggested that increased BACE1 mRNA expression in remaining neuronal cells may contribute to the increased BACE1 protein levels and activity found in brain regions affected by AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The formation of advanced glycation end products (AGEs) is a key pathophysiological event with links to a range of important human diseases. It is now clear that AGEs may act as mediators, not only of diabetic complications(1 2) but also of widespread age related pathology such as Alzheimer's disease,(3) decreased skin elasticity,(4) (5) male erectile dysfunction,(6) (7) pulmonary fibrosis,(8) and atherosclerosis.(9 10) Since many cells and tissues of the eye are profoundly influenced by both diabetes and ageing, it is fitting that advanced glycation is now receiving considerable attention as a possible modulator in important visual disorders. An increasing number of reports confirm widespread AGE accumulation at sites of known ocular pathology and demonstrate how these products mediate crosslinking of long lived molecules in the eye. Such studies also underscore the putative pathophysiological role of advanced glycation in ocular cell dysfunction in vitro and in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many reviews have been written on protein kinase B/Akt focusing on its history dating back from the isolation of the Akt8 transforming murine leukemia virus by Staal in 1977, to the co-discovery of the Akt1 gene by the three groups in 1991 (reviewed in 7). There are currently over 22,000 publications in the PubMed database with "Akt" as a keyword - these publications describe a wealth of diverse data on the physiological functions of Akt isoforms. Many of these publications describe roles of Akt ranging from its requirement for cellular processes such as glucose uptake, cell survival and angiogenesis to roles in diseases such as cancer and ischaemia (22). This review will focus on the evidence for Akt signaling in different kidney cells during diabetes, or diabetic nephropathy (DN).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developmental processes are regulated by the bone morphogenetic protein (BMP) family of secreted molecules. BMPs bind to serine/threonine kinase receptors and signal through the canonical Smad pathway and other intracellular effectors. Integral to the control of BMPs is a diverse group of secreted BMP antagonists that bind to BMPs and prevent engagement with their cognate receptors. Tight temporospatial regulation of both BMP and BMP-antagonist expression provides an exquisite control system for developing tissues. Additional facets of BMP-antagonist biology, such as crosstalk with Wnt and Sonic hedgehog signaling during development, have been revealed in recent years. In addition, previously unappreciated roles for the BMP antagonists in kidney fibrosis and cancer have been elucidated. This review provides a description of BMP-antagonist biology, together with highlights of recent novel insights into the role of these antagonists in development, signal transduction and human disease.