62 resultados para Homocysteine
Resumo:
Background: Dietary supplementation with B vitamins that lower blood homocysteine concentrations is expected to reduce cardiovascular disease risk, but there has been uncertainty about the optimum regimen to use for this purpose.
Resumo:
Folate and vitamin B-6 act in generating methyl groups for homocysteine remethylation, but the kinetic effects of folate or vitamin B-6 deficiency are not known. We used an intravenous primed, constant infusion of stable isotope-labeled serine, methionine, and leucine to investigate one-carbon metabolism in healthy control (n = 5), folate-deficient (n = 4), and vitamin B-6-deficient (n = 5) human subjects. The plasma homocysteine concentration in folate-deficient subjects [15.9 +/-2.1 (SD) mu mol/l] was approximately two times that of control (7.4 +/-1.7 mmol/l) and vitamin B-6-deficient (7.7 +/-2.1 mmol/l) subjects. The rate of methionine synthesis by homocysteine remethylation was depressed (P = 0.027) in folate deficiency but not in vitamin B-6 deficiency. For all subjects, the homocysteine remethylation rate was not significantly associated with plasma homocysteine concentration (r = -0.44, P = 0.12). The fractional synthesis rate of homocysteine from methionine was positively correlated with plasma homocysteine concentration (r = 0.60, P = 0.031), and a model incorporating both homocysteine remethylation and synthesis rates closely predicted plasma homocysteine levels (r = 0.85, P = 0.0015). Rates of homocysteine remethylation and serine synthesis were inversely correlated (r = -0.89, P < 0.001). These studies demonstrate distinctly different metabolic consequences of vitamin B-6 and folate deficiencies.
Resumo:
Background: One-carbon metabolism involves both mitochondrial and cytosolic forms of folate-dependent enzymes in mammalian cells, but few in vivo data exist to characterize the biochemical processes involved.
Objective: We conducted a stable-isotopic investigation to determine the fates of exogenous serine and serine-derived one carbon units in homocysteine remethylation in hepatic and whole-body metabolism.
Design: A healthy man aged 23 y was administered [2,3,3 H-2(3)]serine and [5,5,5-H-2(3)]leucine by intravenous primed, constant infusion. Serial plasma samples were analyzed to determine the isotopic enrichment of free glycine, serine, leucine, methionine, and cystathionine. VLDL apolipoprotein B-100 served as an index of liver free amino acid labeling.
Results: [H-2(1)]Methionine and [H-2(2)]methionine were labeled through homocysteine remethylation. We propose that [H-2(2)]methionine occurs by remethylation with [H-2(2)]methyl groups (as 5-methyltetrahydrofolate) formed only from cytosolic processing of [H-2(3)]serine, whereas [H-2(1)]methionine is formed with labeled one-carbon units from mitochondrial oxidation of C-3 serine to [H-2(1)]formate to yield cytosolic [H-2(1)]methyl groups. The labeling pattern of cystathionine formed from homocysteine and labeled serine suggests that cystathionine is derived mainly from a serine pool different from that used in apolipoprotein B-100 synthesis.
Conclusions: The appearance of both [H-2(1)]- and [H-2(2)]methionine forms indicates that both cytosolic and mitochondrial metabolism of exogenous serine generates carbon units in vivo for methyl group production and homocysteine remethylation. This study also showed the utility of serine infusion and indicated functional roles of cytosolic and mitochondrial compartments in one-carbon metabolism.
Resumo:
Vitamin B-6 deficiency causes mild elevation in plasma homocysteine, but the mechanism has not been clearly established. Serine is a substrate in one-carbon metabolism and in the transsulfuration pathway of homocysteine catabolism, and pyridoxal phosphate (PLP) plays a key role as coenzyme for serine hydroxymethyltransferase (SHMT) and enzymes of transsulfuration. In this study we used [H-2(3)]serine as a primary tracer to examine the remethylation pathway in adequately nourished and vitamin B-6-deficient rats pi and 0.1 mg pyridoxine (PN)/kg diet]. [H-2(3)]Leucine and [1-C-13]methionine were also used to examine turnover of protein and methionine pools, respectively, All tracers were injected intraperitoneally as a bolus dose, and then rats were killed (n = 4/time point) after 30, 60 and 120 min. Rats fed the low-PN diet had significantly lower growth and plasma and liver PLP concentrations, reduced liver SHMT activity, greater plasma and liver total homocysteine concentration, and reduced liver S-adenosylmethionine concentration. Hepatic and whole body protein turnover were reduced in vitamin B-6-deficient rats as evidenced by greater isotopic enrichment of [H-2(3)]leucine. Hepatic [H-2(2)]methionine production from [H-2(3)]serine via cytosolic SHMT and the remethylation pathway was reduced by 80.6% in vitamin B-6 deficiency. The deficiency did not significantly reduce hepatic cystathionine-beta-synthase activity, and in vivo hepatic transsulfuration flux shown by production of [H-2(3)]cysteine from the [H-2(3)]serine increased over twofold. In contrast, plasma appearance of [H-2(3)]cysteine was decreased by 89% in vitamin B-6 deficiency. The rate of hepatic homocysteine production shown by the ratio of [1-C-13]homocysteine/[1-C-13]methionine areas under enrichment vs. time curves was not affected by vitamin B-6 deficiency. Overall, these results indicate that vitamin B-6 deficiency substantially affects one-carbon metabolism by impairing both methyl group production for homocysteine remethylation and flux through whole-body transsulfuration.
Resumo:
Elevation in plasma homocysteine concentration has been associated with vascular disease and neural tube defects. Methionine synthase is a vitamin B(12)-dependent enzyme that catalyses the remethylation of homocysteine to methionine. Therefore, defects in this enzyme may result in elevated homocysteine levels. One relatively common polymorphism in the methionine synthase gene (D919G) is an A to G transition at bp 2,756, which converts an aspartic acid residue believed to be part of a helix involved in co-factor binding to a glycine. We have investigated the effect of this polymorphism on plasma homocysteine levels in a working male population (n = 607) in which we previously described the relationship of the C677T "thermolabile" methylenetetrahydrofolate reductase (MTHFR) polymorphism with homocysteine levels. We found that the methionine synthase D919G polymorphism is significantly (P = 0.03) associated with homocysteine concentration, and the DD genotype contributes to a moderate increase in homocysteine levels across the homocysteine distribution (OR = 1.58, DD genotype in the upper half of the homocysteine distribution, P = 0.006). Unlike thermolabile MTHFR, the homocysteine-elevating effects of the methionine synthase polymorphism are independent of folate and B(12) levels; however, the DD genotype has a larger homocysteine-elevating effect in individuals with low B(6) levels. This polymorphism may, therefore, make a moderate, but significant, contribution to clinical conditions that are associated with elevated homocysteine.
Resumo:
Elevated plasma homocysteine level has been associated with increased risk for cardiovascular and cerebrovascular disease. Variation in the levels of this amino acid has been shown to be due to nutritional status and methylenetetrahydrofolate reductase (MTHFR) genotype.