53 resultados para Glutathione S-Transferase pi


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two families of membrane enzymes catalyze the initiation of the synthesis of O-antigen lipopolysaccharide. The Salmonella enterica Typhimurium WbaP is a prototypic member of one of these families. We report here the purification and biochemical characterization of the WbaP C-terminal (WbaP(CT)) domain harboring one putative transmembrane helix and a large cytoplasmic tail. An N-terminal thioredoxin fusion greatly improved solubility and stability of WbaP(CT) allowing us to obtain highly purified protein. We demonstrate that WbaP(CT) is sufficient to catalyze the in vitro transfer of galactose (Gal)-1-phosphate from uridine monophosphate (UDP)-Gal to the lipid carrier undecaprenyl monophosphate (Und-P). We optimized the in vitro assay to determine steady-state kinetic parameters with the substrates UDP-Gal and Und-P. Using various purified polyisoprenyl phosphates of increasing length and variable saturation of the isoprene units, we also demonstrate that the purified enzyme functions highly efficiently with Und-P, suggesting that the WbaP(CT) domain contains all the essential motifs to catalyze the synthesis of the Und-P-P-Gal molecule that primes the biosynthesis of bacterial surface glycans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyisoprenyl-phosphate N-acetylaminosugar-1-phosphate transferases (PNPTs) constitute a family of eukaryotic and prokaryotic membrane proteins that catalyze the transfer of a sugar-1-phosphate to a phosphoisoprenyl lipid carrier. All PNPT members share a highly conserved 213-Valine-Phenylalanine-Methionine-Glycine-Aspartic acid-217 (VFMGD) motif. Previous studies using the MraY protein suggested that the aspartic acid residue in this motif, D267, is a nucleophile for a proposed double-displacement mechanism involving the cleavage of the phosphoanhydride bond of the nucleoside. Here, we demonstrate that the corresponding residue in the E. coli WecA, D217, is not directly involved in catalysis, as its replacement by asparagine results in a more active enzyme. Kinetic data indicate that the D217N replacement leads to more than twofold increase in V(max) without significant change in the K(m) for the nucleoside sugar substrate. Furthermore, no differences in the binding of the reaction intermediate analog tunicamycin were found in D217N as well as in other replacement mutants at the same position. We also found that alanine substitutions in various residues of the VFMGD motif affect to various degrees the enzymatic activity of WecA in vivo and in vitro. Together, our data suggest that the highly conserved VFMGD motif defines a common region in PNPT proteins that contributes to the active site and is likely involved in the release of the reaction product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

WbaP is a membrane enzyme that initiates O antigen synthesis in Salmonella enterica by catalysing the transfer of galactose 1-phosphate (Gal-1-P) onto undecaprenyl phosphate (Und-P). WbaP possesses at least three predicted structural domains: an N-terminal region containing four transmembrane helices, a large central periplasmic loop, and a C-terminal domain containing the last transmembrane helix and a large cytoplasmic tail. In this work, we investigated the contribution of each region to WbaP function by constructing a series of mutant WbaP proteins and using them to complement O antigen synthesis in DeltawbaP mutants of S. enterica serovars Typhi and Typhimurium. Truncated forms of WbaP lacking the periplasmic loop exhibited altered chain-length distributions in O antigen polymerization, suggesting that this central domain is involved in modulating the chain-length distribution of the O polysaccharide. The N-terminal and periplasmic domains were dispensable for complementation of O antigen synthesis in vivo, suggesting that the C-terminal domain carries the sugar-phosphate transferase activity. However, despite the fact that they complemented the synthesis of O antigen in the DeltawbaP mutant in vivo, membrane extracts containing WbaP derivatives without the N-terminal domain failed to transfer radioactive Gal from UDP-Gal into a lipid-rich fraction. These results suggest that the N-terminal region of WbaP, which contains four transmembrane domains, is essential for the insertion or stability of the protein in the bacterial membrane. We propose that the domain structure of WbaP enables this protein not only to function in the transfer of Gal-1-P to Und-P but also to establish critical interactions with additional proteins required for the correct assembly of O antigen in S. enterica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

WecA is an integral membrane protein that initiates the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide (LPS) by catalyzing the transfer of N-acetylglucosamine (GlcNAc)-1-phosphate onto undecaprenyl phosphate (Und-P) to form Und-P-P-GlcNAc. WecA belongs to a large family of eukaryotic and prokaryotic prenyl sugar transferases. Conserved aspartic acids in putative cytoplasmic loops 2 (Asp90 and Asp91) and 3 (Asp156 and Asp159) were targeted for replacement mutagenesis with either glutamic acid or asparagine. We examined the ability of each mutant protein to complement O-antigen LPS synthesis in a wecA-deficient strain and also determined the steady-state kinetic parameters of the mutant proteins in an in vitro transfer assay. Apparent K(m) and V(max) values for UDP-GlcNAc, Mg(2+), and Mn(2+) suggest that Asp156 is required for catalysis, while Asp91 appears to interact preferentially with Mg(2+), possibly playing a role in orienting the substrates. Topological analysis using the substituted cysteine accessibility method demonstrated the cytosolic location of Asp90, Asp91, and Asp156 and provided a more refined overall topological map of WecA. Also, we show that cells expressing a WecA derivative C terminally fused with the green fluorescent protein exhibited a punctate distribution of fluorescence on the bacterial surface, suggesting that WecA localizes to discrete regions in the bacterial plasma membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiovascular disease is the major cause of morbidity and mortality in patients with end-stage renal failure. Increased free radical production and antioxidant depletion may contribute to the greatly increased risk of atherosclerosis in these patients. Glutathione peroxidase (GPX) is an important antioxidant, the plasma form of which is synthesized mainly in the kidney (eGPX). The aim of this study was to assess the activity of eGPX in patients with end-stage renal failure on haemodialysis. Venous blood was collected from 87 haemodialysis patients immediately prior to and after dialysis and from 70 healthy controls. Serum eGPX activity was measured using hydrogen peroxide as substrate and immunoreactivity determined by ELISA. eGPX activity was significantly reduced in dialysis patients when compared to controls (106 +/- 2.7 and 281 +/- 3.6 U/l respectively, p <0.001). Following haemodialysis, eGPX activity rose significantly to 146 +/- 3.8 U/l, p <0.001, although remaining below control values (p <0.005). Immunoreactive eGPX, however, was similar in all groups (pre-dialysis 14.10 +/- 1.26 microg/ml, post-dialysis 14.58 +/- 1.35 microg/ml, controls 15.20 +/- 1.62 microg/ml, p = NS). A decrease was observed in the specific activity of eGPX in patients when compared to controls (8.81 +/- 1.14, 10.71 +/- 1.54 and 21.97 +/- 1.68 U/mg respectively, p <0.0001). eGPX activity is impaired in patients undergoing haemodialysis and so may contribute to atherogenesis in renal failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Oxidative stress is implicated in the pathogenesis of many human diseases including atherosclerosis. Human glutathione peroxidase 1 (hgpx1) participates in limiting cellular damage caused by oxidation. A characteristic polyalanine sequence polymorphism in exon 1 of hgpx1 produces three alleles with five, six or seven alanine (ALA) repeats in this sequence. The objective of this study was to determine whether hgpx1 genotype is associated with an altered risk of coronary artery disease (CAD).

Methods The frequency of the ALA6 allele was determined in 207 men with angiographic evidence of significant CAD compared to a control group (n = 146), by analysing the lengths of polymerase chain reaction fragments containing the ALA repeat polymorphism. Additional information was collected on severity of CAD, presence or absence of a prior acute myocardial infarction (AMI), smoking status, body mass index (BMI) and other clinical data.

Results There was a significant association between individuals with at least one ALA6 allele and an increased risk of CAD after adjustment for age, BMI and smoking status (odds ratio, 2.07, 95% confidence interval, 1.08-3.99, P = 0.029). However, there was no association between hgpx1 genotype and a previous history of AMI or hgpx1 genotype and severity of CAD.

Conclusion We conclude that individuals possessing one or two ALA6 alleles appear to be at a modest increased risk of CAD. This observation merits further investigation in other patient populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vitro assays are invaluable for the biochemical characterization of UDP-sugar:undecaprenyl-phosphate sugar-1-phosphate transferases. These assays typically involve the use of a radiolabeled substrate and subsequent extraction of the product, which resides in a lipid environment. Here, we describe the preparation of bacterial membranes containing these enzymes, a standard in vitro transferase assay with solvents containing chloroform and methanol, and two methods to measure product formation: scintillation counting and thin layer chromatography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Green tea, a popular polyphenol-containing beverage, has been shown to alleviate clinical features of the metabolic syndrome. However, its effects in endogenous antioxidant biomarkers are not clearly understood. Thus, we tested the hypothesis that green tea supplementation will upregulate antioxidant parameters (enzymatic and nonenzymatic) in adults with the metabolic syndrome. Thirty-five obese participants with the metabolic syndrome were randomly assigned to receive one of the following for 8 weeks: green tea (4 cups per day), control (4 cups water per day), or green tea extract (2 capsules and 4 cups water per day). Blood samples and dietary information were collected at baseline (0 week) and 8 weeks of the study. Circulating carotenoids (a-carotene, ß-carotene, lycopene) and tocopherols (a-tocopherol, ?-tocopherol) and trace elements were measured using high-performance liquid chromatography and inductively coupled plasma mass spectroscopy, respectively. Serum antioxidant enzymes (glutathione peroxidase, glutathione, catalase) and plasma antioxidant capacity were measured spectrophotometrically. Green tea beverage and green tea extract significantly increased plasma antioxidant capacity (1.5 to 2.3 µmol/L and 1.2 to 2.5 µmol/L, respectively; P <.05) and whole blood glutathione (1783 to 2395 µg/g hemoglobin and 1905 to 2751 µg/g hemoglobin, respectively; P <.05) vs controls at 8 weeks. No effects were noted in serum levels of carotenoids and tocopherols and glutathione peroxidase and catalase activities. Green tea extract significantly reduced plasma iron vs baseline (128 to 92 µg/dL, P <.02), whereas copper, zinc, and selenium were not affected. These results support the hypothesis that green tea may provide antioxidant protection in the metabolic syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptor proteins play an important role in signal transduction by regulating the establishment and maintenance of functionally important protein complexes. A recently described member of this group of proteins is p130cas (CAS), which contains numerous sequence motifs predicted to be involved in mediating protein-protein interactions. We propose that adaptor molecules like CAS may help determine the response of a cell to a particular signal by interacting with specific subsets of cellular proteins. To test this hypothesis, we have identified potential binding partners of CAS that may play a rote in cellular transformation by the oncoproteins v-SRC and/or v-CRK. We show that individual domains of CAS associate with specific subsets of proteins in vitro, and that many of these interactions are dependent on the state of tyrosine-phosphorylation of CAS. Sequences necessary for interacting with the focal adhesion kinase pp125FAK (FAK), v-SRC and v-CRK have been mapped to distinct regions of CAS. In addition, the identification of a number of putative CAS-binding partners that are present in crk-transformed cell extracts but undetectable in normal and src-transformed cell extracts supports a model in which unique protein complexes are formed in response to different signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Fasciola spp. liver fluke cause pernicious disease in humans and animals. Whilst current control is unsustainable due to anthelmintic resistance, gene silencing (RNA interference, RNAi) has the potential to contribute to functional validation of new therapeutic targets. The susceptibility of juvenile Fasciola hepatica to double stranded (ds)RNA-induced RNAi has been reported. To exploit this we probe RNAi dynamics, penetrance and persistence with the aim of building a robust platform for reverse genetics in liver fluke. We describe development of standardised RNAi protocols for a commercially-available liver fluke strain (the US Pacific North West Wild Strain), validated via robust transcriptional silencing of seven virulence genes, with in-depth experimental optimisation of three: cathepsin L (FheCatL) and B (FheCatB) cysteine proteases, and a σ-class glutathione transferase (FheσGST).

Methodology/Principal Findings: Robust transcriptional silencing of targets in both F. hepatica and Fasciola gigantica juveniles is achievable following exposure to long (200–320 nt) dsRNAs or 27 nt short interfering (si)RNAs. Although juveniles are highly RNAi-susceptible, they display slower transcript and protein knockdown dynamics than those reported previously. Knockdown was detectable following as little as 4h exposure to trigger (target-dependent) and in all cases silencing persisted for ≥25 days following long dsRNA exposure. Combinatorial silencing of three targets by mixing multiple long dsRNAs was similarly efficient. Despite profound transcriptional suppression, we found a significant time-lag before the occurrence of protein suppression; FheσGST and FheCatL protein suppression were only detectable after 9 and 21 days, respectively.

Conclusions/Significance: In spite of marked variation in knockdown dynamics, we find that a transient exposure to long dsRNA or siRNA triggers robust RNAi penetrance and persistence in liver fluke NEJs supporting the development of multiple-throughput phenotypic screens for control target validation. RNAi persistence in fluke encourages in vivo studies on gene function using worms exposed to RNAi-triggers prior to infection.