57 resultados para TOLL-LIKE RECEPTORS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induction of endotoxin tolerance leads to a reduced inflammatory response after repeated challenge by LPS and is important for resolution of inflammation and prevention of tissue damage. Enterobacterial LPS is recognized by the TLR4 signaling complex, whereas LPS of some non-enterobacterial organisms is capable of signaling independently of TLR4 utilizing TLR2-mediated signal transduction instead. In this study we report that Porphyromonas gingivalis LPS, a TLR2 agonist, fails to induce a fully endotoxin tolerant state in a human monocytic cell line (THP-1) and mouse bone marrow-derived macrophages. In contrast to significantly decreased production of human IL-8 and TNF-alpha and, in mice, keratinocyte-derived cytokine (KC), macrophage inflammatory protein-2 (MIP-2), and TNF-alpha after repeated challenge with Escherichia coli LPS, cells repeatedly exposed to P. gingivalis LPS responded by producing less TNF-alpha but sustained elevated secretion of IL-8, KC, and MIP-2. Furthermore, in endotoxin-tolerant cells, production of IL-8 is controlled at the signaling level and correlates well with NF-kappa B activation, whereas TNF-alpha expression is blocked at the gene transcription level. Interferon beta plays an important role in attenuation of chemokine expression in endotoxin-tolerized cells as shown in interferon regulatory factor-3 knock-out mice. In addition, human gingival fibroblasts, commonly known not to display LPS tolerance, were found to be tolerant to repeated challenge by LPS if pretreated with interferon beta. The data suggest that the inability of the LPS-TLR2 complex to induce full endotoxin tolerance in monocytes/macrophages is related to diminished production of interferon beta and may partly explain the involvement of these LPS isoforms in the pathogenesis of chronic inflammatory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Natural Killer Cells (NK) play an important role in detection and elimination of virus-infected, damaged or cancer cells. NK cell function is guided by expression of Killer Immunoglobulin-like Receptors (KIRs) and contributed to by the cytokine milieu. KIR molecules are grouped on NK cells into stimulatory and inhibitory KIR haplotypes A and B, through which NKs sense and tolerate HLA self-antigens or up-regulate the NK-cytotoxic response to cells with altered HLA self-antigens, damaged by viruses or tumours. We have previously described increased numbers of NK and NK-related subsets in association with sIL-2R cytokine serum levels in BELFAST octo/nonagenarians. We hypothesised that changes in KIR A and B haplotype gene frequencies could explain the increased cytokine profiles and NK compartments previously described in Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST) octo/nonagenarians, who show evidence of ageing well.

Results: In the BELFAST study, 24% of octo/nonagenarians carried the KIR A haplotype and 76% KIR B haplotype with no differences for KIR A haplogroup frequency between male or female subjects (23% v 24%; p=0.88) or for KIR B haplogroup (77% v 76%; p=0.99). Octo/nonagenarian KIR A haplotype carriers showed increased NK numbers and percentage compared to Group B KIR subjects (p=0.003; p=0.016 respectively). There were no KIR A/ B haplogroup-associated changes for related CD57+CD8 (high or low) subsets. Using logistic regression, KIR B carriers were predicted to have higher IL-12 cytokine levels compared to KIR A carriers by about 3% (OR 1.03, confidence limits CI 0.99–1.09; p=0.027) and 14% higher levels for TGF-ß (active), a cytokine with an anti-inflammatory role, (OR 1.14, confidence limits CI 0.99–1.09; p=0.002).

Conclusion: In this observational study, BELFAST octo/nonagenarians carrying KIR A haplotype showed higher NK cell numbers and percentage compared to KIR B carriers. Conversely, KIR B haplotype carriers, with genes encoding for activating KIRs, showed a tendency for higher serum pro-inflammatory cytokines compared to KIR A carriers. While the findings in this study should be considered exploratory they may serve to stimulate debate about the immune signatures of those who appear to age slowly and who represent a model for good quality survivor-hood.© 2013 Rea et al.; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of proteases in viral infection of the lung is poorly understood. Thus, we examined matrix metalloproteinases (MMPs) and cathepsin proteases in respiratory syncytial virus (RSV)-infected mouse lungs. RSV-induced gene expression for MMPs -2, -3, -7, -8, -9, -10, -12, -13, -14, -16, -17, -19, -20, -25, -27, and -28 and cathepsins B, C, E, G, H, K, L1, S, W, and Z in the airways of Friend leukemia virus B sensitive strain mice. Increased proteases were present in the bronchoalveolar lavage fluid (BALF) and lung tissue during infection. Mitochondrial antiviral-signaling protein (MAVS) and TIR-domain-containing adapter-inducing interferon-β-deficient mice were exposed to RSV. Mavs-deficient mice had significantly lower expression of airway MMP-2, -3, -7, -8, -9, -10, -12, -13, and -28 and cathepsins C, G, K, S, W, and Z. In lung epithelial cells, retinoic acid-inducible gene-1 (RIG-I) was identified as the major RIG-I-like receptor required for RSV-induced protease expression via MAVS. Overexpression of RIG-I or treatment with interferon-β in these cells induced MMP and cathepsin gene and protein expression. The significance of RIG-1 protease induction was demonstrated by the fact that inhibiting proteases with batimastat, E64 or ribavirin prevented airway hyperresponsiveness and enhanced viral clearance in RSV-infected mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Receptor families of the innate immune response engage in 'cross-talk' to tailor optimal immune responses against invading pathogens. However, these responses are subject to multiple levels of regulation to keep in check aberrant inflammatory signals. Here, we describe a role for the orphan receptor interleukin-17 receptor D (IL-17RD) in negatively regulating Toll-like receptor (TLR)-induced responses. Deficiency of IL-17RD expression in cells leads to enhanced pro-inflammatory signalling and gene expression in response to TLR stimulation, and Il17rd(-/-) mice are more susceptible to TLR-induced septic shock. We demonstrate that the intracellular Sef/IL-17R (SEFIR) domain of IL-17RD targets TIR adaptor proteins to inhibit TLR downstream signalling thus revealing a paradigm involving cross-regulation of members of the IL-17R and TLR families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of glutamine as a dietary supplement is associated with a reduced risk of infection. We hypothesized that the underlying mechanism could be an increase in the expression and/or functionality of Toll-like receptors (TLR), key receptors sensing infections. The objective of this study was to evaluate whether glutamine supplementation alters the expression and functionality of TLR2 and TLR4 in circulating monocytes of trauma patients admitted to the intensive care unit (ICU).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) sense pathogen-associated molecules and respond by inducing cytokines and type I interferon. Here we show that genetic ablation of the E3 ubiquitin ligase Pellino3 augmented the expression of type I interferon but not of proinflammatory cytokines in response to TLR3 activation. Pellino3-deficient mice had greater resistance against the pathogenic and lethal effects of encephalomyocarditis virus (EMCV). TLR3 signaling induced Pellino3, which in turn interacted with and ubiquitinated TRAF6. This modification suppressed the ability of TRAF6 to interact with and activate IRF7, resulting in downregulation of type I interferon expression. Our findings highlight a new physiological role for Pellino3 and define a new autoregulatory network for controlling type I interferon expression. © 2012 Nature America, Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Innate immunity represents the first line of defence against invading pathogens. It consists of an initial inflammatory response that recruits white blood cells to the site of infection in an effort to destroy and eliminate the pathogen. Some pathogens replicate within host cells, and cell death by apoptosis is an important effector mechanism to remove the replication niche for such microbes. However, some microbes have evolved evasive strategies to block apoptosis, and in these cases host cells may employ further countermeasures, including an inflammatory form of cell death know as necroptosis. This review aims to highlight the importance of the RIP kinase family in controlling these various defence strategies. RIP1 is initially discussed as a key component of death receptor signalling and in the context of dictating whether a cell triggers a pathway of pro-inflammatory gene expression or cell death by apoptosis. The molecular and functional interplay of RIP1 and RIP3 is described, especially with respect to mediating necroptosis and as key mediators of inflammation. The function of RIP2, with particular emphasis on its role in NOD signalling, is also explored. Special attention is given to emphasizing the physiological and pathophysiological contexts for these various functions of RIP kinases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pellino proteins were initially characterized as a family of E3 ubiquitin ligases that can catalyse the ubiquitylation of interleukin-1 receptor-associated kinase 1 (IRAK1) and regulate innate immune signalling pathways. More recently, physiological and molecular roles for members of the Pellino family have been described in the regulation of innate and adaptive immune responses by ubiquitylation. This Review describes the emerging roles of Pellino proteins in innate and adaptive immunity and discusses the mechanistic basis of these functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gingival fibroblasts constitutively express pattern recognition molecules including the Toll-like receptors (TLRs) and produce various cytokines following interaction with bacterial ligands including LPS. Hence gingival fibroblasts are thought to play an important role in the pathogenesis of chronic inflammatory periodontal disease.
Objectives: The aim of this study was to investigate the regulation of expression of TLRs and CD-14 mRNA by gingival fibroblasts, and subsequently the responsiveness of these cells to bacterial stimulation Methods: Gingival fibroblasts were stimulated with IL-1ß (10ng/ml), IFN-g (1000IU/ml), P. gingivalis LPS (1µg/ml), E. coli LPS (1µg/ml) or P. gingivalis sonicate (10µg/ml) for 6 and 24 hr. TLR2, TLR4 and CD14 mRNA expression was subsequently determined by Q-PCR utilising Taqman chemistry. The effects of each factor on mRNA expression was analysed by ANOVA. Cells were pre-incubated with IFN-g (1000IU/ml) for 48hr followed by stimulation with E. coli LPS over the concentration range 0 - 10.0 µg/ml for a further 48 hr. IL-8 production by fibroblasts was subsequently determined by ELISA. Results: After 24 hr IFN-g induced a statistically significant increase in TLR2, TLR4 and CD14 mRNA expression. In contrast, IL-1ß, P. gingivalis LPS, E. coli LPS and P. gingivalis sonicate had no significant effect on mRNA expression at either timepoint. Following pre-stimulation with IFN-g, E. coli LPS increased IL-8 production by gingival fibroblasts in a concentration-dependent manner. Conclusion: IFN-g stimulates mRNA expression levels of TLR2, TLR4 and CD14 in gingival fibroblasts, which may subsequently lead to an increased responsiveness of fibroblasts to bacterial stimulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background

G protein-coupled receptors (GPCRs) constitute one of the largest groupings of eukaryotic proteins, and represent a particularly lucrative set of pharmaceutical targets. They play an important role in eukaryotic signal transduction and physiology, mediating cellular responses to a diverse range of extracellular stimuli. The phylum Platyhelminthes is of considerable medical and biological importance, housing major pathogens as well as established model organisms. The recent availability of genomic data for the human blood fluke Schistosoma mansoni and the model planarian Schmidtea mediterranea paves the way for the first comprehensive effort to identify and analyze GPCRs in this important phylum.

Results

Application of a novel transmembrane-oriented approach to receptor mining led to the discovery of 117 S. mansoni GPCRs, representing all of the major families; 105 Rhodopsin, 2 Glutamate, 3 Adhesion, 2 Secretin and 5 Frizzled. Similarly, 418 Rhodopsin, 9 Glutamate, 21 Adhesion, 1 Secretin and 11 Frizzled S. mediterranea receptors were identified. Among these, we report the identification of novel receptor groupings, including a large and highly-diverged Platyhelminth-specific Rhodopsin subfamily, a planarian-specific Adhesion-like family, and atypical Glutamate-like receptors. Phylogenetic analysis was carried out following extensive gene curation. Support vector machines (SVMs) were trained and used for ligand-based classification of full-length Rhodopsin GPCRs, complementing phylogenetic and homology-based classification.

Conclusions

Genome-wide investigation of GPCRs in two platyhelminth genomes reveals an extensive and complex receptor signaling repertoire with many unique features. This work provides important sequence and functional leads for understanding basic flatworm receptor biology, and sheds light on a lucrative set of anthelmintic drug targets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Infected airway epithelial cells up-regulate the expression of chemokines, chiefly IL-8, and antimicrobial molecules including ß-defensins (BD). Acinetobacter baumannii is a cause of hospital-acquired pneumonia. We examined whether A. baumannii induced the expressions of IL-8 and BD2 by airway epithelial cells and the receptors implicated in bacterial detection. A549 and human primary airway cells released IL-8 upon infection. A. baumannii-infected cells also increased the expression of BD2 which killed A. baummannii strains. IL-8 induction was via NF-B and mitogen-activated kinases p38 and p44/42-dependent pathways. A. baumannii engaged Toll-like receptor (TLR) 2 and TLR4 pathways and A549 cells could use soluble CD14 as TLRs co-receptor. A. baumannii lipopolysaccharide stimulated IL-8 release by A549 cells and sCD14 facilitated the recognition of the lipopolysaccharide. Mass spectrometry analysis revealed that A. baumannii lipid A structure matches those with endotoxic potential. These results demonstrate that airway epithelial cells produce mediators important for A. baumannii clearance. © 2010 March et al.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lung infection by Burkholderia species, in particular B. cenocepacia, accelerates tissue damage and increase post-lung transplant mortality in cystic fibrosis patients. Host- microbes interplay largely depends on interactions between pathogen specific molecules and innate immune receptors such as the Toll-like receptor 4 (TLR4), which recognizes the lipid A moiety of the bacterial lipopolysaccharide (LPS). The human TLR4/MD-2 LPS receptor complex is strongly activated by hexa-acylated lipid A and poorly activated by underacylated lipid A. Here, we report that B. cenocepacia LPS strongly activates human TLR4/MD-2 despite its lipid A having only five acyl chains. Further, we show that aminoarabinose residues in lipid A contribute to TLR4-lipid A interactions, and experiments in a mouse model of LPS-induced endotoxic shock confirmed the pro- inflammatory potential of B. cenocepacia penta-acylated lipid A. Molecular modeling, combined with mutagenesis of TLR4-MD2 interactive surfaces, suggests that longer acyl chains and the aminoarabinose residues in the B. cenocepacia lipid A allow exposure of the fifth acyl chain on the surface of MD-2 enabling interactions with TLR4 and its dimerization. Our results provide a molecular model for activation of the human TLR4/MD- 2 complex by penta-acylated lipid A, explaining the ability of hypoacylated B. cenocepacia LPS to promote pro- inflammatory responses associated to the severe pathogenicity of this opportunistic bacterium.