17 resultados para Communicable diseases Mathematical models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whole genome sequencing (WGS) technology holds great promise as a tool for the forensic epidemiology of bacterial pathogens. It is likely to be particularly useful for studying the transmission dynamics of an observed epidemic involving a largely unsampled 'reservoir' host, as for bovine tuberculosis (bTB) in British and Irish cattle and badgers. BTB is caused by Mycobacterium bovis, a member of the M. tuberculosis complex that also includes the aetiological agent for human TB. In this study, we identified a spatio-temporally linked group of 26 cattle and 4 badgers infected with the same Variable Number Tandem Repeat (VNTR) type of M. bovis. Single-nucleotide polymorphisms (SNPs) between sequences identified differences that were consistent with bacterial lineages being persistent on or near farms for several years, despite multiple clear whole herd tests in the interim. Comparing WGS data to mathematical models showed good correlations between genetic divergence and spatial distance, but poor correspondence to the network of cattle movements or within-herd contacts. Badger isolates showed between zero and four SNP differences from the nearest cattle isolate, providing evidence for recent transmissions between the two hosts. This is the first direct genetic evidence of M. bovis persistence on farms over multiple outbreaks with a continued, ongoing interaction with local badgers. However, despite unprecedented resolution, directionality of transmission cannot be inferred at this stage. Despite the often notoriously long timescales between time of infection and time of sampling for TB, our results suggest that WGS data alone can provide insights into TB epidemiology even where detailed contact data are not available, and that more extensive sampling and analysis will allow for quantification of the extent and direction of transmission between cattle and badgers. © 2012 Biek et al.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute rheumatic fever (ARF) and rheumatic heart disease (RHD) remain major causes of heart failure, stroke and death among African women and children, despite being preventable and imminently treatable. From 21 to 22 February 2015, the Social Cluster of the Africa Union Commission (AUC) hosted a consultation with RHD experts convened by the Pan-African Society of Cardiology (PASCAR) in Addis Ababa, Ethiopia, to develop a 'roadmap' of key actions that need to be taken by governments to eliminate ARF and eradicate RHD in Africa. Seven priority areas for action were adopted: (1) create prospective disease registers at sentinel sites in affected countries to measure disease burden and track progress towards the reduction of mortality by 25% by the year 2025, (2) ensure an adequate supply of high-quality benzathine penicillin for the primary and secondary prevention of ARF/RHD, (3) improve access to reproductive health services for women with RHD and other non-communicable diseases (NCD), (4) decentralise technical expertise and technology for diagnosing and managing ARF and RHD (including ultrasound of the heart), (5) establish national and regional centres of excellence for essential cardiac surgery for the treatment of affected patients and training of cardiovascular practitioners of the future, (6) initiate national multi-sectoral RHD programmes within NCD control programmes of affected countries, and (7) foster international partnerships with multinational organisations for resource mobilisation, monitoring and evaluation of the programme to end RHD in Africa. This Addis Ababa communiqué has since been endorsed by African Union heads of state, and plans are underway to implement the roadmap in order to end ARF and RHD in Africa in our lifetime.