44 resultados para ANTIBIOTIC-RESISTANCE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The neonatal and pediatric antimicrobial point prevalence survey (PPS) of the Antibiotic Resistance and Prescribing in European Children project (http://www.arpecproject.eu/) aims to standardize a method for surveillance of antimicrobial use in children and neonates admitted to the hospital within Europe. This article describes the audit criteria used and reports overall country-specific proportions of antimicrobial use. An analytical review presents methodologies on antimicrobial use.

METHODS: A 1-day PPS on antimicrobial use in hospitalized children was organized in September 2011, using a previously validated and standardized method. The survey included all inpatient pediatric and neonatal beds and identified all children receiving an antimicrobial treatment on the day of survey. Mandatory data were age, gender, (birth) weight, underlying diagnosis, antimicrobial agent, dose and indication for treatment. Data were entered through a web-based system for data-entry and reporting, based on the WebPPS program developed for the European Surveillance of Antimicrobial Consumption project.

RESULTS: There were 2760 and 1565 pediatric versus 1154 and 589 neonatal inpatients reported among 50 European (n = 14 countries) and 23 non-European hospitals (n = 9 countries), respectively. Overall, antibiotic pediatric and neonatal use was significantly higher in non-European (43.8%; 95% confidence interval [CI]: 41.3-46.3% and 39.4%; 95% CI: 35.5-43.4%) compared with that in European hospitals (35.4; 95% CI: 33.6-37.2% and 21.8%; 95% CI: 19.4-24.2%). Proportions of antibiotic use were highest in hematology/oncology wards (61.3%; 95% CI: 56.2-66.4%) and pediatric intensive care units (55.8%; 95% CI: 50.3-61.3%).

CONCLUSIONS: An Antibiotic Resistance and Prescribing in European Children standardized web-based method for a 1-day PPS was successfully developed and conducted in 73 hospitals worldwide. It offers a simple, feasible and sustainable way of data collection that can be used globally.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims: To investigate the effect of sub-lethal challenge with tea tree oil (TTO) on the antibiotic resistance profiles of staphylococci.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

After demonstrating the lack of effectiveness of standard antibiotics against the acquired antibiotic resistance of Bacillus cereus (NCTC 10989), Escherichia coli (NCTC 1186), and Staphylococcus aureus (ATCC 12715), we showed that the following natural substances were antibacterial against these resistant pathogens: cinnamon oil, oregano oil, thyme oil, carvacrol, (S)-perillaldehyde, 3,4-dihydroxybenzoic acid (beta-resorcylic acid), and 3,4-dihydroxyphenethylamine (dopamine). Exposure of the three pathogens to a dilution series of the test compounds showed that oregano oil was the most active substance. The oils and pure compounds exhibited exceptional activity against B. cereus vegetative cells, with oregano oil being active at nanogram, per milliliter levels. In contrast, activities against B. cereus spores were very low. Activities of the test compounds were in the following approximate order: oregano oil > thyme oil approximate to carvacrol > cinnamon oil > perillaldehyde > dopamine > beta-resorcylic acid. The order of susceptibilities of the pathogens to inactivation was as follows: B. cereus (vegetative) much greater than S. aureus approximate to E. coli much greater than B. cereus (spores). Some of the test substances may be effective against antibiotic-resistant bacteria in foods and feeds.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

P>Burkholderia cenocepacia is an environmental bacterium causing serious human opportunistic infections and is extremely resistant to multiple antibiotics including antimicrobial peptides, such as polymyxin B (PmB). Extreme antibiotic resistance is attributed to outer membrane impermeability ('intrinsic' resistance). Previous work showed that production of full-length lipopolysaccharide (LPS) prevents surface binding of PmB. We hypothesized that two tiers of resistance mechanisms rendering different thresholds of PmB resistance exist in B. cenocepacia. To test this notion, candidate genes were mutated in two isogenic strains expressing full-length LPS or truncated LPS devoid of heptose ('heptoseless LPS') respectively. We uncovered various proteins required for PmB resistance only in the strain with heptoseless LPS. These proteins are not involved in preventing PmB binding to whole cells or permeabilization of the outer membrane. Our results support a two-tier model of PmB resistance in B. cenocepacia. One tier sets a very high threshold mediated by the LPS and the outer membrane permeability barrier. The second tier sets a lower threshold that may play a role in PmB resistance only when outer membrane permeability is compromised. This model may be of general applicability to understanding the high antimicrobial peptide resistance of environmental opportunistic pathogens.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Transcriptional regulators, such as SoxS, RamA, MarA, and Rob, which upregulate the AcrAB efflux pump, have been shown to be associated with multidrug resistance in clinically relevant Gram-negative bacteria. In addition to the multidrug resistance phenotype, these regulators have also been shown to play a role in the cellular metabolism and possibly the virulence potential of microbial cells. As such, the increased expression of these proteins is likely to cause pleiotropic phenotypes. Klebsiella pneumoniae is a major nosocomial pathogen which can express the SoxS, MarA, Rob, and RamA proteins, and the accompanying paper shows that the increased transcription of ramA is associated with tigecycline resistance (M. Veleba and T. Schneiders, Antimicrob. Agents Chemother. 56:4466-4467, 2012). Bioinformatic analyses of the available Klebsiella genome sequences show that an additional AraC-type regulator is encoded chromosomally. In this work, we characterize this novel AraC-type regulator, hereby called RarA (Regulator of antibiotic resistance A), which is encoded in K. pneumoniae, Enterobacter sp. 638, Serratia proteamaculans 568, and Enterobacter cloacae. We show that the overexpression of rarA results in a multidrug resistance phenotype which requires a functional AcrAB efflux pump but is independent of the other AraC regulators. Quantitative real-time PCR experiments show that rarA (MGH 78578 KPN_02968) and its neighboring efflux pump operon oqxAB (KPN_02969_02970) are consistently upregulated in clinical isolates collected from various geographical locations (Chile, Turkey, and Germany). Our results suggest that rarA overexpression upregulates the oqxAB efflux pump. Additionally, it appears that oqxR, encoding a GntR-type regulator adjacent to the oqxAB operon, is able to downregulate the expression of the oqxAB efflux pump, where OqxR complementation resulted in reductions to olaquindox MICs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nalidixic acid-resistant Salmonella enterica serovars Kentucky (n5) and Virchow (n6) cultured from individuals were investigated for the presence of plasmid-mediated quinolone resistance (PMQR) determinants.

PMQR markers and mutations within the quinolone resistance-determining regions of the target genes were investigated by PCR followed by DNA sequencing. Conjugation, plasmid profiling and targeted PCR were performed to demonstrate the transferability of the qnrS1 gene. Subsequently, a plasmid was identified that carried a quinolone resistance marker and this was completely sequenced.

A Salmonella Virchow isolate carried a qnrS1 gene associated with an IncN incompatibility group conjugative plasmid of 40995 bp, which was designated pVQS1. The latter conferred resistance to ampicillin and nalidixic acid and showed sequence similarity in its core region to plasmid R46, whilst the resistance-encoding region was similar to pAH0376 from Shigella flexneri and pINF5 from Salmonella Infantis and contained an IS26 remnant, a complete Tn3 structure, a truncated IS2 element and a qnrS1 marker, followed by IS26. In contrast to pINF5, IS26 was identified immediately downstream of the qnrS1 gene.

This is the first known report of a qnrS1 gene in Salmonella spp. in Switzerland. Analysis of the complete nucleotide sequence of the qnrS1-containing plasmid showed a novel arrangement of this antibiotic resistance-encoding region.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Biocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR) Salmonella enterica strains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds of in vitro selection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure of Salmonella strains to an active biocidal compound, a high-level of tolerance was selected for a number of Salmonella serotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonic Salmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As an essential constituent of the outer membrane of Gram-negative bacteria, lipopolysaccharide contributes significantly to virulence and antibiotic resistance. The lipopolysaccharide biosynthetic pathway therefore serves as a promising therapeutic target for antivirulence drugs and antibiotic adjuvants. Here we report the structural-functional studies of D-glycero-beta-D-manno-heptose 7-phosphate kinase (HldA), an absolutely conserved enzyme in this pathway, from Burkholderia cenocepacia. HldA is structurally similar to members of the PfkB carbohydrate kinase family and appears to catalyze heptose phosphorylation via an in-line mechanism mediated mainly by a conserved aspartate, Asp270. Moreover, we report the structures of HldA in complex with two potent inhibitors in which both inhibitors adopt a folded conformation and occupy the nucleotide-binding sites. Together, these results provide important insight into the mechanism of HldA-catalyzed heptose phosphorylation and necessary information for further development of HldA inhibitors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mechanisms of antibiotic resistance were examined in nalidixic acid-resistant Salmonella enterica serovar Enteritidis field isolates displaying decreased susceptibility to ciprofloxacin and in in vitro-derived ciprofloxacin-resistant mutants (104-cip and 5408-cip). All field isolates harbored a single gyrA mutation (D87Y). Deletion of acrB and complementation with wild-type gyrA increased quinolone susceptibility. Selection for ciprofloxacin resistance was associated with the development of an additional gyrA (S83F) mutation in 104-cip, novel gyrB (E466D) and parE (V461G) mutations in 5408-cip, overexpression of acrB and decreased susceptibility to nonquinolone antibiotics in both mutants, and decreased OmpF production and altered lipopoly- saccharide in 104-cip. Complementation of mutated gyrA and gyrB with wild-type alleles restored susceptibility to quinolones in 104-cip and significantly decreased the ciprofloxacin MIC in 5408-cip. Complementation of parE had no effect on quinolone MICs. Deletion of acrB restored susceptibility to ciprofloxacin and other antibiotics tested. Both soxS and marA were overexpressed in 104-cip, and ramA was overexpressed in 5408-cip. Inactivation of each of these global regulators lowered ciprofloxacin MICs, decreased expression of acrB, and restored susceptibility to other antibiotics. Mutations were found in soxR (R20H) and in soxS (E52K) in 104-cip and in ramR (G25A) in 5408-cip. In conclusion, both efflux activity and a single gyrA mutation contribute to nalidixic acid resistance and reduced ciprofloxacin sensitivity. Ciprofloxacin resistance and decreased susceptibility to multiple antibiotics can result from different genetic events leading to development of target gene mutations, increased efflux activity resulting from differential expression of global regulators associated with mutations in their regulatory genes, and possible altered membrane permeability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cystic fibrosis is characterised by chronic polymicrobial infection and inflammation in the airways of patients. Antibiotic treatment regimens, targeting recognised pathogens, have substantially contributed to increased life expectancy of patients with this disease. Although the emergence of antimicrobial resistance and selection of highly antibiotic-resistant bacterial strains is of major concern, the clinical relevance in cystic fibrosis is yet to be defined. Resistance has been identified in recognised cystic fibrosis pathogens and in other bacteria (eg, Prevotella and Streptococcus spp) detected in the airway microbiota, but their role in the pathophysiology of infection and inflammation in chronic lung disease is unclear. Increased antibiotic resistance in cystic fibrosis might be attributed to a range of complex factors including horizontal gene transfer, hypoxia, and biofilm formation. Strategies to manage antimicrobial resistance consist of new antibiotics or localised delivery of antimicrobial agents, iron sequestration, inhibition of quorum-sensing, and resistome analysis. Determination of the contributions of every bacterial species to lung health or disease in cystic fibrosis might also have an important role in the management of antibiotic resistance. 

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Medical device related infections are becoming an increasing prevalent area of infectious disease. They can be attributed to a multitude of factors from an increasing elderly population with reduced immunological status to increasing microbial resistance and evolution. Of greatest significance is the failure of standard antimicrobial regimens to eradicate biomaterial-related infections due to the formation of microbial biofilms consisting of extracellular polymeric substances. Biofilms form and thrive at the abiotic device surface where nutrients are more concentrated and symbiotic colonies can be formed. The formation of a biofilm matrix occurs in a series of steps beginning with reversible attachment of bacteria to the surface of the substrate and terminating in dispersion of mature biofilm microcolonies that aim to colonise fresh surfaces high in nutrients. Mature biofilms can resist 10-1000 times the concentrations of standard antibiotic regimens that are required to kill genetically equivalent planktonic forms. The extent of the infection and the pathogen(s) present can be attributed to both the form and location of the device. It is important that preventative measures and treatment strategies relate to combating the causative microorganisms. Preventative measures include: the use of anti-infective biomaterials that can be coated or incorporated with standard or innovative antimicrobials; modified anti-adhesive medical devices; environmental sterilisation protocols and prophylactic drug therapy. Treatment of established infection may require removal of the device or if deemed possible the device may be salvageable through the initiation of antimicrobial therapy. The increasing spectre of antibiotic resistance and medical device related infections are a large and increasing burden on health care systems and the patient’s quality of life and long term prognosis. As an infectious disease it represents one of the most difficult challenges facing modern science and healthcare.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Burkholderia cenocepacia infections in CF patients involve heightened inflammation, fatal sepsis, and high antibiotic resistance. Proinflammatory IL-1 beta secretion is important in airway inflammation and tissue damage. However, little is known about this pathway in macrophages upon B. cenocepacia infection. We report here that murine macrophages infected with B. cenocepacia K56-2 produce proinflammatory cytokine IL-1 beta in a TLR4 and caspase-1-mediated manner. We also determined that the OPS (O antigen) of B. cenocepacia LPS contributes to IL-1 beta production and pyroptotic cell death. Furthermore, we showed that the malfunction of the CFTR channel augmented IL-1 beta production upon B. cenocepacia infection of murine macrophages. Taken together, we identified eukaryotic and bacterial factors that contribute to inflammation during B. cenocepacia infection, which may aid in the design of novel approaches to control pulmonary inflammation. J. Leukoc. Biol. 89: 481-488; 2011.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although cystic fibrosis pulmonary infection is polymicrobial, routine laboratory methods focus on the detection of a small number of known pathogens. Recently, the use of strict anaerobic culture techniques and molecular technologies have identified other potential pathogens including anaerobic bacteria. Determining the role of all bacteria in a complex bacterial community and how they interact is extremely important; individual bacteria may affect how the community develops, possess virulence factors, produce quorum-sensing signals, stimulate an immune response or transfer antibiotic resistance genes, which could all contribute to disease progression. There are many challenges to managing cystic fibrosis lung infection but as knowledge about the airway microbiome continues to increase, this may lead to advances in the therapeutic management of the disease. © 2011 Future Medicine Ltd.