188 resultados para Leukemia Immunological aspects


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although allogeneic bone marrow transplantation has been shown to be a highly effective treatment for acute and chronic leukemia, leukemic relapse remains a significant problem. Leukemic relapse occurs in recipient cells in the majority of cases, but the paucity of donor cell leukemias may reflect the sensitivity of the investigative technique. We have developed a highly sensitive technique to identify the origin of all hematopoietic cells in the post transplant state which is based on PCR amplification of microsatellites, polymorphic tandem repetitive elements. We have identified donor leukemia (AML M5) following a sex matched BMT for severe aplastic anemia, verified a previously reported case of donor leukemia following BMT for chronic granulocytic leukemia and recently identified an acquired cytogenetic abnormality(del 11q23) in donor cells four years following an apparently successful BMT for AML. In all cases the donors have remained healthy. Postulated mechanisms include transfer to the transplanted marrow of a dormant oncogene residing in the DNA of either a virus, the chromosomes of degenerating irradiation damaged host leukemic cells or in the marrow stroma which is radioresistant and host in origin following BMT. Using sensitive techniques donor leukemia has been shown to be a more common event than was previously thought and an understanding of its pathogenesis may allow us to elucidate leukemogenic mechanisms in man.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allogeneic bone marrow transplantation has been shown to be a very effective therapy for Chronic Granulocytic Leukemia with long term disease free survivals in excess of 60%. Relapse rates remain low at 15% following histocompatible sibling transplants and lower rates following matched unrelated donor grafts. Relapse rates however, are higher if BMT is carried out in transformation or blast crisis. Leukemic relapse in donor cells following transplantation for CGL is a rare event. The occurrence of donor leukemia however, may be under reported as accurate and sensitive investigation of the origin of relapsed leukemia following BMT requires DNA based technologies. A possible mechanism of donor leukemia in CGL is transfection of donor cells with the chimeric gene which is unique to this disease. It is possible that the malignant cells found in transformed or blast crisis of CGL may have a greater potential to transfect donor haematopoietic material. Careful evaluation of the incidence of donor leukemia using molecular biology methods may elucidate the frequency of this event following BMT for CGL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myelodysplastic syndromes (MDS) represent a broad spectrum of diseases characterized by their clinical manifestation as one or more cytopenias, or a reduction in circulating blood cells. MDS is predominantly a disease of the elderly, with a median age in the UK of around 75. Approximately one third of MDS patients will develop secondary acute myeloid leukemia (sAML) that has a very poor prognosis. Unfortunately, most standard cytotoxic agents are often too toxic for older patients. This means there is a pressing unmet need for novel therapies that have fewer side effects to assist this vulnerable group. This challenge was tackled using bioinformatic analysis of available transcriptomic data to establish a gene-based signature of the development and progression of MDS. This signature was then used to identify novel therapeutic compounds via statistically-significant connectivity mapping. This approach suggested re-purposing an existing and widely-prescribed drug, bromocriptine as a novel potential therapy in these disease settings. This drug has shown selectivity for leukemic cells as well as synergy with current therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: In spite of the recent discovery of genetic mutations in most myelodysplasic (MDS) patients, the pathophysiology of these disorders still remains poorly understood, and only few in vivo models are available to help unravel the disease.

METHODS: We performed global specific gene expression profiling and functional pathway analysis in purified Sca1+ cells of two MDS transgenic mouse models that mimic human high-risk MDS (HR-MDS) and acute myeloid leukemia (AML) post MDS, with NRASD12 and BCL2 transgenes under the control of different promoters MRP8NRASD12/tethBCL-2 or MRP8[NRASD12/hBCL-2], respectively.

RESULTS: Analysis of dysregulated genes that were unique to the diseased HR-MDS and AML post MDS mice and not their founder mice pointed first to pathways that had previously been reported in MDS patients, including DNA replication/damage/repair, cell cycle, apoptosis, immune responses, and canonical Wnt pathways, further validating these models at the gene expression level. Interestingly, pathways not previously reported in MDS were discovered. These included dysregulated genes of noncanonical Wnt pathways and energy and lipid metabolisms. These dysregulated genes were not only confirmed in a different independent set of BM and spleen Sca1+ cells from the MDS mice but also in MDS CD34+ BM patient samples.

CONCLUSIONS: These two MDS models may thus provide useful preclinical models to target pathways previously identified in MDS patients and to unravel novel pathways highlighted by this study.