163 resultados para Single Nucleotide


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whole genome sequencing (WGS) technology holds great promise as a tool for the forensic epidemiology of bacterial pathogens. It is likely to be particularly useful for studying the transmission dynamics of an observed epidemic involving a largely unsampled 'reservoir' host, as for bovine tuberculosis (bTB) in British and Irish cattle and badgers. BTB is caused by Mycobacterium bovis, a member of the M. tuberculosis complex that also includes the aetiological agent for human TB. In this study, we identified a spatio-temporally linked group of 26 cattle and 4 badgers infected with the same Variable Number Tandem Repeat (VNTR) type of M. bovis. Single-nucleotide polymorphisms (SNPs) between sequences identified differences that were consistent with bacterial lineages being persistent on or near farms for several years, despite multiple clear whole herd tests in the interim. Comparing WGS data to mathematical models showed good correlations between genetic divergence and spatial distance, but poor correspondence to the network of cattle movements or within-herd contacts. Badger isolates showed between zero and four SNP differences from the nearest cattle isolate, providing evidence for recent transmissions between the two hosts. This is the first direct genetic evidence of M. bovis persistence on farms over multiple outbreaks with a continued, ongoing interaction with local badgers. However, despite unprecedented resolution, directionality of transmission cannot be inferred at this stage. Despite the often notoriously long timescales between time of infection and time of sampling for TB, our results suggest that WGS data alone can provide insights into TB epidemiology even where detailed contact data are not available, and that more extensive sampling and analysis will allow for quantification of the extent and direction of transmission between cattle and badgers. © 2012 Biek et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Integrins (ITGs) are key elements in cancer biology, regulating tumor growth, angiogenesis and lymphangiogenesis through interactions of the tumor cells with the microenvironment. Moving from the hypothesis that ITGs could have different effects in stage II and III colon cancer, we tested whether a comprehensive panel of germline single-nucleotide polymorphisms (SNPs) in ITG genes could predict stage-specific time to tumor recurrence (TTR). A total of 234 patients treated with 5-fluorouracil-based chemotherapy at the University of Southern California were included in this study. Whole-blood samples were analyzed for germline SNPs in ITG genes using PCR-restriction fragment length polymorphism or direct DNA sequencing. In the multivariable analysis, stage II colon cancer patients with at least one G allele for ITGB3 rs4642 had higher risk of recurrence (hazard ratio (HR)=4.027, 95% confidence interval (95% CI) 1.556-10.421, P=0.004). This association was also significant in the combined stage II-III cohort (HR=1.975, 95% CI 1.194-3.269, P=0.008). The predominant role of ITGB3 rs4642 in stage II diseases was confirmed using recursive partitioning, showing that ITGB3 rs4642 was the most important factor in stage II diseases. In contrast, in stage III diseases the combined analysis of ITGB1 rs2298141 and ITGA4 rs7562325 allowed to identify three distinct prognostic subgroups (P=0.009). The interaction between stage and the combined ITGB1 rs2298141 and ITGA4 rs7562325 on TTR was significant (P=0.025). This study identifies germline polymorphisms in ITG genes as independent stage-specific prognostic markers for stage II and III colon cancer. These data may help to select subgroups of patients who may benefit from ITG-targeted treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tumor recurrence after curative resection remains a major problem in patients with locally advanced colorectal cancer treated with adjuvant chemotherapy. Genetic single-nucleotide polymorphisms (SNP) may serve as useful molecular markers to predict clinical outcomes in these patients and identify targets for future drug development. Recent in vitro and in vivo studies have demonstrated that the plastin genes PLS3 and LCP1 are overexpressed in colon cancer cells and play an important role in tumor cell invasion, adhesion, and migration. Hence, we hypothesized that functional genetic variations of plastin may have direct effects on the progression and prognosis of locally advanced colorectal cancer. We tested whether functional tagging polymorphisms of PLS3 and LCP1 predict time to tumor recurrence (TTR) in 732 patients (training set, 234; validation set, 498) with stage II/III colorectal cancer. The PLS3 rs11342 and LCP1 rs4941543 polymorphisms were associated with a significantly increased risk for recurrence in the training set. PLS3 rs6643869 showed a consistent association with TTR in the training and validation set, when stratified by gender and tumor location. Female patients with the PLS3 rs6643869 AA genotype had the shortest median TTR compared with those with any G allele in the training set [1.7 vs. 9.4 years; HR, 2.84; 95% confidence interval (CI), 1.32-6.1; P = 0.005] and validation set (3.3 vs. 13.7 years; HR, 2.07; 95% CI, 1.09-3.91; P = 0.021). Our findings suggest that several SNPs of the PLS3 and LCP1 genes could serve as gender- and/or stage-specific molecular predictors of tumor recurrence in stage II/III patients with colorectal cancer as well as potential therapeutic targets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Lapatinib plus capecitabine emerged as an efficacious therapy in metastatic breast cancer (mBC). We aimed to identify germline single-nucleotide polymorphisms (SNPs) in genes involved in capecitabine catabolism and human epidermal receptor signaling that were associated with clinical outcome to assist in selecting patients likely to benefit from this combination.

PATIENTS AND METHODS: DNA was extracted from 240 of 399 patients enrolled in EGF100151 clinical trial (NCT00078572; clinicaltrials.gov) and SNPs were successfully evaluated in 234 patients. The associations between SNPs and clinical outcome were analyzed using Fisher's exact test, Kaplan-Meier curves, log-rank tests, likelihood ratio test within logistic or Cox regression model, as appropriate.

RESULTS: There were significant interactions between CCND1 A870G and clinical outcome. Patients carrying the A-allele were more likely to benefit from lapatinib plus capecitabine versus capecitabine when compared with patients harboring G/G (P = 0.022, 0.024 and 0.04, respectively). In patients with the A-allele, the response rate (RR) was significantly higher with lapatinib plus capecitabine (35%) compared with capecitabine (11%; P = 0.001) but not between treatments in patients with G/G (RR = 24% and 32%, respectively; P = 0.85). Time to tumor progression (TTP) was longer in patients with the A-allele treated with lapatinib plus capecitabine compared with capecitabine (median TTP = 7.9 and 3.4 months; P < 0.001), but not in patients with G/G (median TTP = 6.1 and 6.6 months; P = 0.92).

CONCLUSION: Our findings suggest that CCND1A870G may be useful in predicting clinical outcome in HER2-positive mBC patients treated with lapatinib plus capecitabine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wnt/β-catenin signaling has a central role in the development and progression of most colon cancers (CCs). Germline variants in Wnt/β-catenin pathway genes may result in altered gene function and/or activity, thereby causing inter-individual differences in relation to tumor recurrence capacity and chemoresistance. We investigated germline polymorphisms in a comprehensive panel of Wnt/β-catenin pathway genes to predict time to tumor recurrence (TTR) in patients with stage III and high-risk stage II CC. A total of 234 patients treated with 5-fluorouracil-based chemotherapy were included in this study. Whole-blood samples were analyzed for putative functional germline polymorphisms in SFRP3, SFRP4, DKK2, DKK3, Axin2, APC, TCF7L2, WNT5B, CXXC4, NOTCH2 and GLI1 genes by PCR-based restriction fragment-length polymorphism or direct DNA sequencing. Polymorphisms with statistical significance were validated in an independent study cohort. The minor allele of WNT5B rs2010851 T>G was significantly associated with a shorter TTR (10.7 vs 4.9 years; hazard ratio: 2.48; 95% CI, 0.96-6.38; P=0.04) in high-risk stage II CC patients. This result remained significant in multivariate Cox's regression analysis. This study shows that the WNT5B germline variant rs2010851 was significantly identified as a stage-dependent prognostic marker for CC patients after 5-fluorouracil-based adjuvant therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study was designed to analyze the gender-related association between SCN1A polymorphisms (voltage-gated sodium channels; α-subunit) and time-to-recurrence (TTR) in patients with colorectal cancer (CRC) treated with 5-fluoruracil (5-FU)-based adjuvant chemotherapy. We enrolled from a prospective database patients with stage II and III CRC treated with adjuvant 5-FU-based chemotherapy. Genotypes for SCN1A rs3812718 and rs229877 were determined by direct DNA sequencing. One hundred twenty-seven males and 107 females were included in the study. In the univariate and multivariate analysis, the shortest TTR was associated with female patients carrying the rs3812718-TT genotype (hazard ratio (HR): 2.26 (95% confidence interval (CI): 0.89, 5.70), P=0.039) but with male patients carrying the rs3812718-CC genotype (HR: 0.49 (95% CI: 0.18, 1.38), P=0.048). For rs229877 the CT genotype was associated with a trend for shorter TTR in both gender populations. The study validated gender-dependent association between genomic SCN1A rs3812718 polymorphism and TTR in CRC patients treated with adjuvant 5-FU-based chemotherapy. This study confirms that voltage-gated Na+ channels may be a potential therapeutic target and a useful predictive biomarker before 5-FU infusion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent evidence indicates a potential prognostic and predictive value for germline polymorphisms in genes involved in cell cycle control. We investigated the effect of cyclin D1 (CCND1) rs9344 G>A in stage II/III colon cancer patients and validated the findings in an independent study cohort. For evaluation and validation set, a total of 264 and 234 patients were included. Patients treated with 5-fluorouracil-based chemotherapy, carrying the CCND1 rs9344 A/A genotype had significantly decreased time-to-tumor recurrence (TTR) in univariate analysis and multivariate analysis (hazard ratio (HR) 2.47; 95% confidence interval (CI) 1.16-5.29; P=0.019). There was no significant association between CCND1 rs9344 G>A and TTR in patients with curative surgery alone. In the validation set, the A allele of CCND1 rs9344 G>A remained significantly associated with decreased TTR in univariate and multivariate analyses (HR 1.94; 95% CI 1.05-3.58; P=0.035). CCND1 rs9344 G>A may be a predictive and/or prognostic biomarker in stage II/III colon cancer patients, however, prospective trials are warranted to confirm our findings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: There is substantial germline genetic variability within angiogenesis pathway genes, thereby causing interindividual differences in angiogenic capacity and resistance to antiangiogenesis therapy. We investigated germline polymorphisms in genes involved in VEGF-dependent and -independent angiogenesis pathways to predict clinical outcome and tumor response in metastatic colorectal cancer (mCRC) patients treated with bevacizumab and oxaliplatin-based chemotherapy.

EXPERIMENTAL DESIGN: A total of 132 patients treated with first-line bevacizumab and FOLFOX or XELOX were included in this study. Genomic DNA was isolated from whole-blood samples by PCR-RFLP or direct DNA sequencing. The endpoints of the study were progression-free survival (PFS), overall survival (OS), and response rate (RR).

RESULTS: The minor alleles of EGF rs444903 A>G and IGF-1 rs6220 A>G were associated with increased OS and remained significant in multivariate Cox regression analysis (HR: 0.52; 95% CI: 0.31-0.87; adjusted P = 0.012 and HR: 0.60; 95% CI: 0.36-0.99; adjusted P = 0.046, respectively). The minor allele of HIF1α rs11549465 C>T was significantly associated with increased PFS but lost its significance in multivariate analysis. CXCR1 rs2234671 G>C, CXCR2 rs2230054 T>C, EGFR rs2227983 G>A, and VEGFR-2 rs2305948 C>T predicted tumor response, with CXCR1 rs2234671 G>C remaining significant in multiple testing (P(act) = 0.003).

CONCLUSION: In this study, we identified common germline variants in VEGF-dependent and -independent angiogenesis genes predicting clinical outcome and tumor response in patients with mCRC receiving first-line bevacizumab and oxaliplatin-based chemotherapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Adiposity, as indicated by body mass index (BMI), has been associated with risk of cardiovascular diseases in epidemiological studies. We aimed to investigate if these associations are causal, using Mendelian randomization (MR) methods.

Methods: The associations of BMI with cardiovascular outcomes [coronary heart disease (CHD), heart failure and ischaemic stroke], and associations of a genetic score (32 BMI single nucleotide polymorphisms) with BMI and cardiovascular outcomes were examined in up to 22 193 individuals with 3062 incident cardiovascular events from nine prospective follow-up studies within the ENGAGE consortium. We used random-effects meta-analysis in an MR framework to provide causal estimates of the effect of adiposity on cardiovascular outcomes.

Results: There was a strong association between BMI and incident CHD (HR = 1.20 per SD-increase of BMI, 95% CI, 1.12–1.28, P = 1.9·10−7), heart failure (HR = 1.47, 95% CI, 1.35–1.60, P = 9·10−19) and ischaemic stroke (HR = 1.15, 95% CI, 1.06–1.24, P = 0.0008) in observational analyses. The genetic score was robustly associated with BMI (β = 0.030 SD-increase of BMI per additional allele, 95% CI, 0.028–0.033, P = 3·10−107). Analyses indicated a causal effect of adiposity on development of heart failure (HR = 1.93 per SD-increase of BMI, 95% CI, 1.12–3.30, P = 0.017) and ischaemic stroke (HR = 1.83, 95% CI, 1.05–3.20, P = 0.034). Additional cross-sectional analyses using both ENGAGE and CARDIoGRAMplusC4D data showed a causal effect of adiposity on CHD.

Conclusions: Using MR methods, we provide support for the hypothesis that adiposity causes CHD, heart failure and, previously not demonstrated, ischaemic stroke.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both polygenicity (many small genetic effects) and confounding biases, such as cryptic relatedness and population stratification, can yield an inflated distribution of test statistics in genome-wide association studies (GWAS). However, current methods cannot distinguish between inflation from a true polygenic signal and bias. We have developed an approach, LD Score regression, that quantifies the contribution of each by examining the relationship between test statistics and linkage disequilibrium (LD). The LD Score regression intercept can be used to estimate a more powerful and accurate correction factor than genomic control. We find strong evidence that polygenicity accounts for the majority of the inflation in test statistics in many GWAS of large sample size.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spectral sensitivity of visual pigments in vertebrate eyes is optimized for specific light conditions. One of such pigments, rhodopsin (RH1), mediates dim-light vision. Amino acid replacements at tuning sites may alter spectral sensitivity, providing a mechanism to adapt to ambient light conditions and depth of habitat in fish. Here we present a first investigation of RH1 gene polymorphism among two ecotypes of Atlantic cod in Icelandic waters, which experience divergent light environments throughout the year due to alternative foraging behaviour. We identified one synonymous single nucleotide polymorphism (SNP) in the RH1 protein coding region and one in the 3' untranslated region (3'-UTR) that are strongly divergent between these two ecotypes. Moreover, these polymorphisms coincided with the well-known panthophysin (Pan I) polymorphism that differentiates coastal and frontal (migratory) populations of Atlantic cod. While the RH1 SNPs do not provide direct inference for a specific molecular mechanism, their association with this dim-sensitive pigment indicates the involvement of the visual system in local adaptation of Atlantic cod.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shallow population structure is generally reported for most marine fish and explained as a consequence of high dispersal, connectivity and large population size. Targeted gene analyses and more recently genome-wide studies have challenged such view, suggesting that adaptive divergence might occur even when neutral markers provide genetic homogeneity across populations. Here, 381 SNPs located in transcribed regions were used to assess large- and fine-scale population structure in the European hake (Merluccius merluccius), a widely distributed demersal species of high priority for the European fishery. Analysis of 850 individuals from 19 locations across the entire distribution range showed evidence for several outlier loci, with significantly higher resolving power. While 299 putatively neutral SNPs confirmed the genetic break between basins (F(CT) = 0.016) and weak differentiation within basins, outlier loci revealed a dramatic divergence between Atlantic and Mediterranean populations (F(CT) range 0.275-0.705) and fine-scale significant population structure. Outlier loci separated North Sea and Northern Portugal populations from all other Atlantic samples and revealed a strong differentiation among Western, Central and Eastern Mediterranean geographical samples. Significant correlation of allele frequencies at outlier loci with seawater surface temperature and salinity supported the hypothesis that populations might be adapted to local conditions. Such evidence highlights the importance of integrating information from neutral and adaptive evolutionary patterns towards a better assessment of genetic diversity. Accordingly, the generated outlier SNP data could be used for tackling illegal practices in hake fishing and commercialization as well as to develop explicit spatial models for defining management units and stock boundaries.