1 resultado para automotive powertrain assembly

em QSpace: Queen's University - Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipoprotein(a) (Lp(a)) has been identified as an emerging risk factor for the development of vascular diseases. The Lp(a) particle is assembled in a 2-step process upon secretion of the LDL and apo(a) components from hepatocytes. Work done by the Koschinsky group has identified an oxidase-like activity present in the conditioned medium (CM) harvested from human hepatoma (HepG2), as well as HEK 293 (human endothelian kidney) cells that catalyzes the rate of covalent Lp(a) formation. We have taken a candidate enzyme approach to identifying this oxidase activity. Specifically, we have proposed that the QSOX (Quiescin/sulfhydryl oxidase) is responsible for catalysis of covalent Lp(a) assembly. An oxidase activity assay developed by Dr. Thorpe (University of Delaware) was used to detect QSOX1 in CM harvested from cultured cell lines that catalyze covalent Lp(a) assembly. In addition, the QSOX1 transcript was identified in each cell line and quantified with the use of Real-Time RT-PCR. Quantitative assays of covalent Lp(a) assembly were performed to study some characteristics of the unkwown oxidase activity. First, conditioned medium was dialyzed through a 5 kDa cutoff, as this has previously been shown to reduce the aforementioned oxidase activity. Purified QSOX was then added back to the reaction and the rate of catalysis was observed. The addition of QSOX appeared to enhance the rate of covalent Lp(a) assembly in a dose-dependent manner. Additional covalent Lp(a) assembly assays were performed where various chemicals were added to determine whether Lp(a) assembly was affected. The addition of EDTA did not affect covalent assembly, suggesting that the oxidase activity may not be metallo-dependent. Moreover, dose-dependent addition of Calcium, DTT, Copper and glutathione to dialyzed medium also did not affect the rate of Lp(a) assembly. Taken together, these studies will aid in identifying the nature of the oxidase activity that catalyzes covalent Lp(a) assembly. This will provide us with valuable information on how Lp(a) particles are assembled, and may lead to the development of drugs inhibiting Lp(a) formation.