3 resultados para ankle brachial index
em QSpace: Queen's University - Canada
Resumo:
The walls of blood vessels are lined with a single-cell layer of endothelial cells. As blood flows through the arteries, a frictional force known as shear stress is sensed by mechanosensitive structures on the endothelium. Short and long term changes in shear stress can have a significant influence on the regulation of endothelial function. Acutely, shear stress triggers a pathway that culminates in the release of vasodilatory molecules from the endothelium and subsequent vasodilation of the artery. This endothelial response is known as flow mediated dilation (FMD). FMD is used as an index of endothelial function and is commonly assessed using reactive hyperemia (RH)-FMD, a method which elicits a large, short lived increase in shear stress following the release of a brief (5 min) forearm occlusion. A recent study found that a short term exposure (30 min) to a sustained elevation in shear stress potentiates subsequent RH-FMD. FMD can also result from a more prolonged, sustained increase in shear stress elicited by handgrip exercise (HGEX-FMD). There is evidence to suggest that interventions and conditions impact FMD resulting from sustained and transient shear stress stimuli differently, indicating that HGEX-FMD and RH-FMD provide different information about endothelial function. It is unknown whether HGEX-FMD is improved by short term exposure to shear stress. Understanding how exercise induced FMD is regulated is important because it contributes to blood flow responses during exercise. The study purpose was therefore to assess the impact of a handgrip exercise (intervention) induced sustained elevation in shear stress on subsequent brachial artery (BA) HGEX-FMD. Twenty healthy male participants (22±3yrs) preformed a 30-minute HGEX intervention on two experimental days. BA-FMD was assessed using either an RH or HGEX shear stress stimulus at 3 time points: pre-intervention, 10 min post and 60 min post. FMD and shear stress magnitude were determined via ultrasound. Both HGEX and RH-FMD increased significantly from pre-intervention to 10 min-post (p<0.01). These findings indicate that FMD stimulated by exercise induced increases in shear stress is potentiated by short term shear stress exposure. These findings advance our understanding regarding the regulation of endothelial function by shear stress.
Resumo:
The thesis focuses on a central theme of the epidemiology and health economics of ankle sprains to inform health policy and the provision of health services. It describes the burden, prognosis, resource utilization, and costs attributed to these injuries. The first manuscript systematically reviewed 34 studies on the direct and indirect costs of treating ankle and foot injuries. The overall costs per patient ranged from $2,075- $3,799 (2014 USD) for ankle sprains; $290-$20,132 for ankle fractures; and $6,345-$45,731 for foot fractures, reflecting differences in injury severity, treatment methods, and study characteristics. The second manuscript provided an epidemiological and economic profile of non-fracture ankle and foot injuries in Ontario using linked databases from the Institute for Clinical Evaluative Sciences. The incidence rate of ankle sprains was 16.9/1,000 person-years. Annually, ankle and foot injuries cost $21,685,876 (2015 CAD). The mean expenses per case were $99.98 (95% CI, $99.70-100.26) for any injury. Costs ranged from $133.78-$210.75 for ankle sprains and $1,497.12-$1,755.69 for dislocations. The third manuscript explored the impact of body mass index on recovery from medically attended grade 1 and 2 ankle sprains using the Foot and Ankle Outcome Score. Data came from a randomized controlled trial of a physiotherapy intervention in Kingston, Ontario. At six months, the odds ratio of recovery for participants with obesity was 0.60 (0.37-0.97) before adjustment and 0.74 (0.43-1.29) after adjustment compared to non-overweight participants. The fourth manuscript used trial data to examine the health-related quality of life among ankle sprain patients using the Health Utilities Index version 3 (HUI-3). The greatest improvements in scores were seen at one month post-injury (HUI-3: 0.88, 95% CI: 0.86-0.90). Individuals with grade 2 sprains had significantly lower ambulation scores than those with grade 1 sprains (0.70 vs. 0.84; p<0.05). The final manuscript used trial data to describe the financial burden (direct and indirect costs) of ankle sprains. The overall mean costs were $1,508 (SD: $1,452) at one month and increased to $2,206 (SD: $3,419) at six months. Individuals with more severe injuries at baseline had significantly higher (p<0.001) costs compared to individuals with less severe injuries, after controlling for confounders.
Resumo:
Mach-Zehnder and Michelson interferometers using core-offset attenuators were demonstrated. As the relative offset direction of the two attenuators in the Mach-Zehnder interferometer can significantly affect the extinction ratio of the interference pattern, single core-offset attenuator-based sensors appear more robust and repeatable. A novel fiber Michelson interferometer refractive index (RI) sensor was subsequently realized by a single core-offset attenuator and a layer of ~ 500-nm gold coating. The device had a minimum insertion loss of 0.01 dB and maximum extinction ratio over 9 dB. The sensitivity (0.333 nm) of the new sensor to its surrounding RI change (0.01) was found to be comparable to that (0.252 nm) of an identical long period gratings pair Mach-Zehnder interferometric sensor, and its ease of fabrication makes it a low-cost alternative to existing sensing applications.