3 resultados para Workflow

em QSpace: Queen's University - Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increased need for 3D recording of archaeological sites and digital preservation of their artifacts. Digital photogrammetry with prosumer DSLR cameras is a suitable tool for recording epigraphy in particular, as it allows for the recording of inscribed surfaces with very high accuracy, often better than 2 mm and with only a short time spent in the field. When photogrammetry is fused with other computational photography techniques like panoramic tours and Reflectance Transformation Imaging, a workflow exists to rival traditional LiDAR­based methods. The difficulty however, arises in the presentation of 3D data. It requires an enormous amount of storage and end­user sophistication. The proposed solution is to use game­engine technology and high definition virtual tours to provide not only scholars, but also the general public with an uncomplicated interface to interact with the detailed 3D epigraphic data. The site of Stobi, located near Gradsko, in the Former Yugoslav Republic of Macedonia (FYROM) was used as a case study to demonstrate the effectiveness of RTI, photogrammetry and virtual tour imaging working in combination. A selection of nine sets of inscriptions from the archaeological site were chosen to demonstrate the range of application for the techniques. The chosen marble, sandstone and breccia inscriptions are representative of the varying levels of deterioration and degradation of the epigraphy at Stobi, in which both their rates of decay and resulting legibility is varied. This selection includes those which are treated and untreated stones as well as those in situ and those in storage. The selection consists of both Latin and Greek inscriptions with content ranging from temple dedication inscriptions to statue dedications. This combination of 3D modeling techniques presents a cost and time efficient solution to both increase the legibility of severely damaged stones and to digitally preserve the current state of the inscriptions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The section of CN railway between Vancouver and Kamloops runs along the base of many hazardous slopes, including the White Canyon, which is located just outside the town of Lytton, BC. The slope has a history of frequent rockfall activity, which presents a hazard to the railway below. Rockfall inventories can be used to understand the frequency-magnitude relationship of events on hazardous slopes, however it can be difficult to consistently and accurately identify rockfall source zones and volumes on large slopes with frequent activity, leaving many inventories incomplete. We have studied this slope as a part of the Canadian Railway Ground Hazard Research Program and have collected remote sensing data, including terrestrial laser scanning (TLS), photographs, and photogrammetry data since 2012, and used change detection to identify rockfalls on the slope. The objective of this thesis is to use a subset of this data to understand how rockfalls identified from TLS data could be used to understand the frequency-magnitude relationship of rockfalls on the slope. This includes incorporating both new and existing methods to develop a semi-automated workflow to extract rockfall events from the TLS data. We show that these methods can be used to identify events as small as 0.01 m3 and that the duration between scans can have an effect on the frequency-magnitude relationship of the rockfalls. We also show that by incorporating photogrammetry data into our analysis, we can create a 3D geological model of the slope and use this to classify rockfalls by lithology, to further understand the rockfall failure patterns. When relating the rockfall activity to triggering factors, we found that the amount of precipitation occurring over the winter has an effect on the overall rockfall frequency for the remainder of the year. These results can provide the railways with a more complete inventory of events compared to records created through track inspection, or rockfall monitoring systems that are installed on the slope. In addition, we can use the database to understand the spatial and temporal distribution of events. The results can also be used as an input to rockfall modelling programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visualization and interpretation of geological observations into a cohesive geological model are essential to Earth sciences and related fields. Various emerging technologies offer approaches to multi-scale visualization of heterogeneous data, providing new opportunities that facilitate model development and interpretation processes. These include increased accessibility to 3D scanning technology, global connectivity, and Web-based interactive platforms. The geological sciences and geological engineering disciplines are adopting these technologies as volumes of data and physical samples greatly increase. However, a standardized and universally agreed upon workflow and approach have yet to properly be developed. In this thesis, the 3D scanning workflow is presented as a foundation for a virtual geological database. This database provides augmented levels of tangibility to students and researchers who have little to no access to locations that are remote or inaccessible. A Web-GIS platform was utilized jointly with customized widgets developed throughout the course of this research to aid in visualizing hand-sized/meso-scale geological samples within a geologic and geospatial context. This context is provided as a macro-scale GIS interface, where geophysical and geodetic images and data are visualized. Specifically, an interactive interface is developed that allows for simultaneous visualization to improve the understanding of geological trends and relationships. These developed tools will allow for rapid data access and global sharing, and will facilitate comprehension of geological models using multi-scale heterogeneous observations.