2 resultados para Scientific literature

em QSpace: Queen's University - Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lithium is used in the cathode and electrolyte of rechargeable batteries in many portable electronics and electric vehicles, and is thus seen as a critical component of modern technology (Gruber et al., 2011). Electric vehicles are promoted as a way to reduce carbon emissions associated with the transportation sector, which accounts for 14.3% of anthropogenic greenhouse gas emissions (OECD International Transport Forum, 2010). However, the sustainability of lithium procurement will influence the overall environmental impact of this proposed “green” solution. It is estimated that 66% of the world’s lithium resource is contained in natural brines, 24% in pegmatites, and 8% in sedimentary rocks such as hectorite clays (Gruber et al., 2011). It has been shown that “[r]ecycling of lithium from Li-ion batteries may be a critical factor in balancing the supply of lithium with future demand” (Gruber et al., 2011). In an attempt to quantify energy and materials consumption associated with production of a unit of useful lithium compounds, industry reports and peer-reviewed scientific literature concerning lithium mining and lithium recycling were reviewed and compared. Other aspects of sustainability, such as waste or by-products produced in the production of a unit of useful lithium, were also explored. Thus, this paper will serve to further the evaluation of the comparative environmental consequences associated with lithium production via extraction versus recycling. Efficiencies must be made in both processes to maximize productivity while minimizing ecological harm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work I study the optical properties of helical particles and chiral sculptured thin films, using computational modeling (discrete dipole approximation, Berreman calculus), and experimental techniques (glancing angle deposition, ellipsometry, scatterometry, and non-linear optical measurements). The first part of this work focuses on linear optics, namely light scattering from helical microparticles. I study the influence of structural parameters and orientation on the optical properties of particles: circular dichroism (CD) and optical rotation (OR), and show that as a consequence of random orientation, CD and OR can have the opposite sign, compared to that of the oriented particle, potentially resulting in ambiguity of measurement interpretation. Additionally, particles in random orientation scatter light with circular and elliptical polarization states, which implies that in order to study multiple scattering from randomly oriented chiral particles, the polarization state of light cannot be disregarded. To perform experiments and attempt to produce particles, a newly constructed multi stage thin film coating chamber is calibrated. It enables the simultaneous fabrication of multiple sculptured thin film coatings, each with different structure. With it I successfully produce helical thin film coatings with Ti and TiO_{2}. The second part of this work focuses on non-linear optics, with special emphasis on second-harmonic generation. The scientific literature shows extensive experimental and theoretical work on second harmonic generation from chiral thin films. Such films are expected to always show this non-linear effect, due to their lack of inversion symmetry. However no experimental studies report non-linear response of chiral sculptured thin films. In this work I grow films suitable for a second harmonic generation experiment, and report the first measurements of non-linear response.