3 resultados para Next generation genome sequencing

em QSpace: Queen's University - Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Halo white dwarfs remain one of the least studied stellar populations in the Milky Way because of their faint luminosities. Recent work has uncovered a population of hot white dwarfs which are thought to be remnants of low-mass Population II stars. This thesis uses optical data from the Next Generation Virgo Cluster Survey (NGVS) and ultravoilet data from the GALEX Ultraviolet Virgo Cluster Survey (GUViCS) to select candidates which may belong to this population of recently formed halo white dwarfs. A colour selection was used to separate white dwarfs from QSOs and main-sequence stars. Photometric distances are calculated using model colour-absolute magnitude relations. Proper motions are calculated by using the difference in positions between objects from the Sloan Digital Sky Survey and the NGVS. The proper motions are combined with the calculated photometric distances to calculate tangential velocities, as well as approximate Galactic space velocities. White dwarf candidates are characterized as belonging to either the disk or the halo using a variety of methods, including calculated scale heights (z> 1 kpc), tangential velocities (vt >200 km/s), and their location in (V,U) space. The 20 halo white dwarf candidates which were selected using Galactic space velocities are analyzed, and their colours and temperatures suggest that these objects represent some of the youngest white dwarfs in the Galactic halo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is the most frequently diagnosed cancer in women, accounting for over 25% of cancer diagnoses and 13% of cancer-related deaths in Canadian women. There are many types of therapies for treatment or management of breast cancer, with chemotherapy being one of the most widely used. Taxol (paclitaxel) is one of the most extensively used chemotherapeutic agents for treating cancers of the breast and numerous other sites. Taxol stabilizes microtubules during mitosis, causing the cell cycle to arrest until eventually the cell undergoes apoptosis. Although Taxol has had significant benefits in many patients, response rates range from only 25-69%, and over half of Taxol-treated patients eventually acquire resistance to the drug. Drug resistance remains one of the greatest barriers to effective cancer treatment, yet little has been discerned regarding resistance to Taxol, despite its widespread clinical use. Kinases are known to be heavily involved in cancer development and progression, and several kinases have been linked to resistance of Taxol and other chemotherapeutic agents. However, a systematic screen for kinases regulating Taxol resistance is lacking. Thus, in this study, a set of kinome-wide screens was conducted to interrogate the involvement of kinases in the Taxol response. Positive-selection and negative-selection CRISPR-Cas9 screens were conducted, whereby a pooled library of 5070 sgRNAs targeted 507 kinase-encoding genes in MCF-7 breast cancer cells that were Taxol-sensitive (WT) or Taxol-resistant (TxR) which were then treated with Taxol. Next generation sequencing (NGS) was performed on cells that survived Taxol treatment, allowing identification and quantitation of sgRNAs. STK38, Blk, FASTK and Nek3 stand out as potentially critical kinases for Taxol-induced apoptosis to occur. Furthermore, kinases CDKL1 and FRK may have a role in Taxol resistance. Further validation of these candidate kinases will provide novel pre-clinical data about potential predictive biomarkers or therapeutic targets for breast cancer patients in the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advent of next-generation sequencing has significantly reduced the cost of obtaining large-scale genetic resources, opening the door for genomic studies of non-model but ecologically interesting species. The shift in mating system, from outcrossing to selfing, has occurred thousands of times in angiosperms and is accompanied by profound changes in the population genetics and ecology of a species. A large body of work has been devoted to understanding why the shift occurs and the impact of the shift on the genetics of the resulting selfing populations, however, the causes and consequences of the transition to selfing involve a complicated interaction of genetic and demographic factors which are difficult to untangle. Abronia umbellata is a Pacific coastal dune endemic which displays a striking shift in mating system across its geographic range, with large-flowered outcrossing populations south of San Francisco and small-flowered selfing populations to the north. Abronia umbellata is an attractive model system for the study of mating system transitions because the shift appears to be recent and therefore less obscured by post-shift processes, it has a near one-dimensional geographic range which simplifies analysis and interpretation, and demographic data has been collected for many of the populations. In this study, we generated transcriptome-level data for 12 plants including individuals from both subspecies, along with a resequencing study of 48 individuals from populations across the range. The genetic analysis revealed a recent transition to selfing involving a drastic reduction in genetic diversity in the selfing lineage, potentially indicative of a recent population bottleneck and a transition to selfing due to reproductive assurance. Interestingly, the genetic structure of the populations was not coincident with the current subspecies demarcation, and two large-flowered populations were classified with the selfing subspecies, suggesting a potential need for re-evaluation of the current subspecies classification. Our finding of low diversity in selfing populations may also have implications for the conservation value of the threatened selfing subspecies.