2 resultados para MINIMAL CHANGE DISEASE

em QSpace: Queen's University - Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Climate change is expected to have marked impacts on forest ecosystems. In Ontario forests, this includes changes in tree growth, stand composition and disturbance regimes, with expected impacts on many forest-dependent communities, the bioeconomy, and other environmental considerations. In response to climate change, renewable energy systems, such as forest bioenergy, are emerging as critical tools for carbon emissions reductions and climate change mitigation. However, these systems may also need to adapt to changing forest conditions. Therefore, the aim of this research was to estimate changes in forest growth and forest cover in response to anticipated climatic changes in the year 2100 in Ontario forests, to ultimately explore the sustainability of bioenergy in the future. Using the Haliburton Forest and Wildlife Reserve in Ontario as a case study, this research used a spatial climate analog approach to match modeled Haliburton temperature and precipitation (via Fourth Canadian Regional Climate Model) to regions currently exhibiting similar climate (climate analogs). From there, current forest cover and growth rates of core species in Haliburton were compared to forests plots in analog regions from the US Forest Service Forest Inventory and Analysis (FIA). This comparison used two different emission scenarios, corresponding to a high and a mid-range emission future. This research then explored how these changes in forests may influence bioenergy feasibility in the future. It examined possible volume availability and composition of bioenergy feedstock under future conditions. This research points to a potential decline of softwoods in the Haliburton region with a simultaneous expansion of pre-established hardwoods such as northern red oak and red maple, as well as a potential loss in sugar maple cover. From a bioenergy perspective, hardwood residues may be the most feasible feedstock in the future with minimal change in biomass availability for energy production; under these possible conditions, small scale combined heat and power (CHP) and residential pellet use may be the most viable and ecologically sustainable options. Ultimately, understanding the way in which forests may change is important in informing meaningful policy and management, allowing for improved forest bioenergy systems, now and in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Development Permit System has been introduce with minimal directives for establishing a decision making process. This is in opposition to the long established process for minor variances and suggests that the Development Permit System does not necessarily incorporate all of Ontario’s fundamental planning principles. From this concept, the study aimed to identify how minor variances are incorporated into the Development Permit System. In order to examine this topic, the research was based around the following research questions: • How are ‘minor variance’ applications processed within the DPS? • To what extent do the four tests of a minor variance influence the outcomes of lower level applications in the DPS approval process? A case study approach was used for this research. The single-case design employed both qualitative and quantitative research methods including a review of academic literature, court cases, and official documents, as well as a content analysis of Class 1, 1A, and 2 Development Permit application files from the Town of Carleton Place that were decided between 2011 and 2015. Upon the completion of the content analysis, it was found that minor variance issues were most commonly assigned to Class 1 applications. Planning staff generally met approval timelines and embraced their delegated approval authority, readily attaching conditions to applications in order to mitigate off-site impacts. While staff met the regulatory requirements of the DPS, ‘minor variance’ applications were largely decided on impact alone, demonstrating that the principles established by the four tests, the defining quality of the minor variance approval process, had not transferred to the Development Permit System. Alternatively, there was some evidence that the development community has not fully adjusted to the requirements of the new approvals process, as some applications were supported using a rationale containing the four tests. Subsequently, a set of four recommendations were offered which reflect the main themes established by the findings. The first two recommendations are directed towards the Province, the third to municipalities and the fourth to developers and planning consultants: 1) Amend Ontario Regulation 608/06 so that provisions under Section 4(3)(e) fall under Section 4(2). 2) Change the rhetoric from “combining elements of minor variances” to “replacing minor variances”. 3) Establish clear evaluation criteria. 4) Understand the evaluative criteria of the municipality in which you are working.