3 resultados para Simulation modelling

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we evaluate whether the assimilation of remotely-sensed optical data into a marine ecosystem model improves the simulation of biogeochemistry in a shelf sea. A localized Ensemble Kalman filter was used to assimilate weekly diffuse light attenuation coefficient data, Kd(443) from SeaWiFs, into an ecosystem model of the western English Channel. The spatial distributions of (unassimilated) surface chlorophyll from satellite, and a multivariate time series of eighteen biogeochemical and optical variables measured in situ at one long-term monitoring site were used to evaluate the system performance for the year 2006. Assimilation reduced the root mean square error and improved the correlation with the assimilated Kd(443) observations, for both the analysis and, to a lesser extent, the forecast estimates, when compared to the reference model simulation. Improvements in the simulation of (unassimilated) ocean colour chlorophyll were less evident, and in some parts of the Channel the simulation of this data deteriorated. The estimation errors for the (unassimilated) in situ data were reduced for most variables with some exceptions, e.g. dissolved nitrogen. Importantly, the assimilation adjusted the balance of ecosystem processes by shifting the simulated food web towards the microbial loop, thus improving the estimation of some properties, e.g. total particulate carbon. Assimilation of Kd(443) outperformed a comparative chlorophyll assimilation experiment, in both the estimation of ocean colour data and in the simulation of independent in situ data. These results are related to relatively low error in Kd(443) data, and because it is a bulk optical property of marine ecosystems. Assimilation of remotely-sensed optical properties is a promising approach to improve the simulation of biogeochemical and optical variables that are relevant for ecosystem functioning and climate change studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toxin production in marine microalgae was previously shown to be tightly coupled with cellular stoichiometry. The highest values of cellular toxin are in fact mainly associated with a high carbon to nutrient cellular ratio. In particular, the cellular accumulation of C-rich toxins (i.e., with C:N > 6.6) can be stimulated by both N and P deficiency. Dinoflagellates are the main producers of C-rich toxins and may represent a serious threat for human health and the marine ecosystem. As such, the development of a numerical model able to predict how toxin production is stimulated by nutrient supply/deficiency is of primary utility for both scientific and management purposes. In this work we have developed a mechanistic model describing the stoichiometric regulation of C-rich toxins in marine dinoflagellates. To this purpose, a new formulation describing toxin production and fate was embedded in the European Regional Seas Ecosystem Model (ERSEM), here simplified to describe a monospecific batch culture. Toxin production was assumed to be composed by two distinct additive terms; the first is a constant fraction of algal production and is assumed to take place at any physiological conditions. The second term is assumed to be dependent on algal biomass and to be stimulated by internal nutrient deficiency. By using these assumptions, the model reproduced the concentrations and temporal evolution of toxins observed in cultures of Ostreopsis cf. ovata, a benthic/epiphytic dinoflagellate producing C-rich toxins named ovatoxins. The analysis of simulations and their comparison with experimental data provided a conceptual model linking toxin production and nutritional status in this species. The model was also qualitatively validated by using independent literature data, and the results indicate that our formulation can be also used to simulate toxin dynamics in other dinoflagellates. Our model represents an important step towards the simulation and prediction of marine algal toxicity.