4 resultados para Withdrawal

em Greenwich Academic Literature Archive - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead-free solder paste printing process accounts for majority of the assembly defects in the electronic manufacturing industry. The study investigates rheological behaviour and stencil printing performance of the lead-free solder pastes (Sn/Ag/Cu). Oscillatory stress sweep test was carried out to study the visco-elastic behaviour of the lead-free solder pastes. The visco-elastic behaviour of the paste encompasses solid and liquid characteristic of the paste, which could be used to study the flow behaviour experienced by the pastes during the stencil printing process. From this study, it was found that the solid characteristics (G0) is higher than the liquid characteristic (G0 0) for the pastes material. In addition, the results from the study showed that the solder paste with a large G0 = G0 0 has a higher cohesiveness resulting in poor withdrawal of the paste during the stencil printing process. The phase angles (d) was used to correlate the quality of the dense suspensions to the formulation of solder paste materials. This study has revealed the value of having a rheological measurement for explaining and characterising solder pastes for stencil printing. As the demand for lead free pastes increases rheological measurements can assist with the formulation or development of new pastes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The article examines the expansion of private water companies since 1989 the withdrawal from developing countries from 2003 onwards, and the economic impact of privatisation. The analysis is set in the context of the historical development of water services in the north and the south, showing that the role of private water companies since the start of the 20th century has been historically limited and exceptional. The impact of water privatisation is considered in relation to the issues of investment, prices, and efficiency, drawing on empirical evidence from the north and developing countries in Asia, Africa and Latin America. Particular attention is given to France and the UK, where private water companies, for different reasons, are most established. The evidence from both north and south shows systematic underinvestment, monopoly pricing, regulatory gaming, and no significant efficiency differences between public and private sector operators. In conclusion, the article identifies institutional policies including fiscal constraints and lending conditionalities as key drivers of privatisation, and questions whether these can sustain privatisation in the water sector where historical experience indicates it is an inappropriate solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As the trend toward further miniaturisation of pocket and handheld consumer electronic products continues apace, the requirements for even smaller solder joints will continue. With further reductions in the size of solder joints, the reliability of solder joints will become more and more critical to the long-term performance of electronic products. Solder joints play an important role in electronics packaging, serving both as electrical interconnections between the components and the board, and as mechanical support for components. With world-wide legislation for the removal/reduction of lead and other hazardous materials from electrical and electronic products, the electronics manufacturing industry has been faced with an urgent search for new lead-free solder alloy systems and other solder alternatives. In order to achieve high volume, low cost production, the stencil printing process and subsequent wafer bumping of solder paste has become indispensable. There is wide agreement in industry that the paste printing process accounts for the majority of assembly defects, and most defects originate from poor understanding of the effect of printing process parameters on printing performance. The printing of ICAs and lead-free solder pastes through the very small stencil apertures required for flip chip applications was expected to result in increased stencil clogging and incomplete transfer of paste to the printed circuit pads. Paste release from the stencil apertures is dependent on the interaction between the solder paste, surface pad and aperture wall; including its shape. At these very narrow aperture sizes the paste rheology becomes crucial for consistent paste withdrawal because for smaller paste volumes surface tension effects become dominant over viscous flow. Successful aperture filling and release will greatly depend on the rheology of the paste material. Wall-slip plays an important role in characterising the flow behaviour of solder paste materials. The wall- slip arises due to the various attractive and repulsive forces acting between the solder particles and the walls of the measuring geometry. These interactions could lead to the presence of a thin solvent layer adjacent to the wall, which gives rise to slippage. The wall slip effect can play an important role in ensuring successful paste release after the printing process. The aim of this study was to investigate the influence of the paste microstructure on slip formation for the paste materials (lead-free solder paste and isotropic conductive adhesives). The effect of surface roughness on the paste viscosity was investigated. It was also found that altering the surface roughness of the parallel plate measuring geometry did not significantly eliminate wall slip as was expected. But results indicate that the use of a relatively rough surface helps to increase paste adhesion to the plates, inducing structural breakdown of the paste. Most importantly, the study also demonstrated on how the wall slip formation in the paste material could be utilised for understanding of the paste microstructure and its flow behaviour

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The market for solder paste materials in the electronic manufacturing and assembly sector is very large and consists of material and equipment suppliers and end users. These materials are used to bond electronic components (such as flip-chip, CSP and BGA) to printed circuit boards (PCB's) across a range of dimensions where the solder interconnects can be in the order of 0.05mm to 5mm in size. The non-Newtonian flow properties exhibited by solder pastes during its manufacture and printing/deposition phases have been of practical concern to surface mount engineers and researchers for many years. The printing of paste materials through very small-sized stencil apertures is known to lead to increased stencil clogging and incomplete transfer of paste to the substrate pads. At these very narrow aperture sizes the paste rheology and particle-wall interactions become crucial for consistent paste withdrawal. These non-Newtonian effects must be understood so that the new paste formulations can be optimised for consistent printing. The focus of the study reported in this paper is the characterisation of the rheological properties of solder pastes and flux mediums, and the evaluation of the effect of these properties on the pastes' printing performance at the flip-chip assembly application level. Solder pastes are known to exhibit a thixotropic behaviour, which is recognised by the decrease in apparent viscosity of paste material with time when subjected to a constant shear rate. The proper characterisation of this time-dependent theological behaviour of solder pastes is crucial for establishing the relationships between the pastes' structure and flow behaviour; and for correlating the physical parameters with paste printing performance. In this paper, we present a number of methods which have been developed for characterising the time-dependent and non-Newtonian rheological behaviour of solder pastes and flux mediums as a function of shear rates. We also present results of the study of the rheology of the solder pastes and flux mediums using the structural kinetic modelling approach, which postulates that the network structure of solder pastes breaks down irreversibly under shear, leading to time and shear dependent changes in the flow properties. Our results show that for the solder pastes used in the study, the rate and extent of thixotropy was generally found to increase with increasing shear rate. The technique demonstrated in this study has wide utility for R&D personnel involved in new paste formulation, for implementing quality control procedures used in solder paste manufacture and packaging; and for qualifying new flip-chip assembly lines