7 resultados para POLYMERIC IGA1

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug dissolution and release characteristics from freeze-dried wafers and solvent-cast films prepared from sodium carboxymethylcellulose (CMC) have been investigated to determine the mechanisms of drug release from the two systems. The formulations were prepared by freeze-drying (wafers) or drying in air (films), the hydrated gel of the polymer containing paracetamol as a model soluble drug. Scanning electron microscopy (SEM) was used to examine differences between the physical structure of the wafers and films. Dissolution studies were performed using an exchange cell and drug release was measured by UV spectroscopy at 242 nm. The effects of drug loading, polymer content and amount of glycerol (films) on the release characteristics of paracetamol were investigated. The release profiles of paracetamol from the wafers and films were also compared. A digital camera was used to observe the times to complete hydration and dissolution of the wafers containing different amounts of CMC and how that impacts on drug release rates. Both formulations showed sustained type drug release that was modelled by the Korsmeyer–Peppas equation. Changes in the concentration of drug and glycerol (films) did not significantly alter the rate of drug release while increasing polymer content significantly decreased the rate of drug release from both formulations. The results show that the rate of paracetamol release was faster from the wafers than the corresponding films due to differences in their physical structures. The wafers which formed a porous network, hydrated faster than the more dense and continuous, (non-porous) sheet-like structure of the films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solvent-cast films from three polymers, carboxymethylcellulose (CMC), sodium alginate (SA), and xanthan gum, were prepared by drying the polymeric gels in air. Three methods, (a) passive hydration, (b) vortex hydration with heating, and (c) cold hydration, were investigated to determine the most effective means of preparing gels for each of the three polymers. Different drying conditions [relative humidity - RH (6-52%) and temperature (3-45 degrees C)] were investigated to determine the effect of drying rate on the films prepared by drying the polymeric gels. The tensile properties of the CMC films were determined by stretching dumbbell-shaped films to breaking point, using a Texture Analyser. Glycerol was used as a plasticizer, and its effects on the drying rate, physical appearance, and tensile properties of the resulting films were investigated. Vortex hydration with heating was the method of choice for preparing gels of SA and CMC, and cold hydration for xanthan gels. Drying rates increased with low glycerol content, high temperature, and low relative humidity. The residual water content of the films increased with increasing glycerol content and high relative humidity and decreased at higher temperatures. Generally, temperature affected the drying rate to a greater extent than relative humidity. Glycerol significantly affected the toughness (increased) and rigidity (decreased) of CMC films. CMC films prepared at 45 degrees C and 6% RH produced suitable films at the fastest rate while films containing equal quantities of glycerol and CMC possessed an ideal balance between flexibility and rigidity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: A novel methodology has been introduced to effectively coat intravascular stents with sirolimus-loaded polymeric microparticles. Methods: Dry powders of the microparticulate formulation, consisting of non-erodible polymers, were produced by a supercritical, aerosol, solvent extraction system (ASES). A design of experiment (DOE) approach was conducted on the independent variables, such as organic/CO2 phase volume ratio, polymer weight and stirring-rate, while regression analysis was utilized to interpret the influence of all operational parameters on the dependent variable of particle size. The dry powders, so formed, entered an electric field created by corona charging and were sprayed on the earthed metal stent. Furthermore, the thermal stability of sirolimus was investigated to define the optimum conditions for fusion to the metal surfaces. Results: The electrostatic dry powder deposition technology (EDPDT) was used on the metal strut followed by fusion to produce uniform, reproducible and accurate coatings. The coated stents exhibited sustained release profiles over 25 days, similar to commercial products. EDPDT-coated stents displayed significant reduced platelet adhesion. Conclusions: EDPDT appeared to be a robust accurate and reproducible technology to coat eluting stents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linear poly(amidoamine)s (PAAs) have been designed to exhibit minimal non-specific toxicity, display pH-dependent membrane lysis and deliver genes and toxins in vitro. The aim of this study was to measure PAA cellular uptake using ISA1-OG (and as a reference ISA23-OG) in B16F10 cells in vitro and, by subcellular fractionation, quantitate intracellular trafficking of (125)I-labelled ISA1-tyr in liver cells after intravenous (i.v.) administration to rats. The effect of time after administration (0.5-3h) and ISA1 dose (0.04-100mg/kg) on trafficking, and vesicle permeabilisation (N-acetyl-b-D-glucosaminidase (NAG) release from an isolated vesicular fraction) were also studied. ISA1-OG displayed approximately 60-fold greater B16F10 cell uptake than ISA23-OG. Passage of ISA1 along the liver cell endocytic pathway caused a transient decrease in vesicle buoyant density (also visible by TEM). Increasing ISA1 dose from 10mg/kg to 100mg/kg increased both radioactivity and NAG levels in the cytosolic fraction (5-10 fold) at 1h. Moreover, internalised ISA1 provoked NAG release from an isolated vesicular fraction in a dose-dependent manner. These results provide direct evidence, for the first time, of PAA permeabilisation of endocytic vesicular membranes in vivo, and they have important implications for potential efficacy/toxicity of such polymeric vectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, the use of swelling polymeric matrices for the encapsulation and controlled release of protein drugs has received significant attention. The purpose of the present study was to investigate the release of albumin, a model protein from alginate/hydroxypropyl-methylcellulose (HPMC) gel beads. A hydrogel system comprised of two natural, hydrophilic polymers; sodium alginate and HPMC was studied as a carrier of bovine serum albumin (BSA) which was used as a model protein. The morphology, bead size and the swelling ratio were studied in different physical states; fully swollen, dried and reswollen using scanning electron microscopy and image analysis. Finally the effect of different alginate/HPMC ratios on the BSA release profile in physiological saline solution was investigated. Swelling experiments revealed that the bead diameter increases with the viscosity of the alginate solution while the addition of HPMC resulted in a significant increase of the swelling ratio. The BSA release patterns showed that the addition of HPMC increased the protein-release rate while the release mechanism fitted the Peppas model. Alginate/HPMC beads prepared using the ionic gelation exhibited high BSA loading efficiency for all formulations. The presence of HPMC increased the swelling ability of the alginate beads while the particle size remained unaffected. Incorporation of HPMC in the alginate gels also resulted in improved BSA release in physiological saline solution. All formulations presented a non-Fickian release mechanism described by the Peppas model. In addition, the implementation of non-parametric tests showed significant differences in the release patterns between the alginate/HPMC and the pure alginate beads, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macromolecular therapeutics and nano-sized drug delivery systems often require localisation to specific intracellular compartments. In particular, efficient endosomal escape, retrograde trafficking, or late endocytic/lysosomal activation are often prerequisites for pharmacological activity. The aim of this study was to define a fluorescence microscopy technique able to confirm the localisation of water-soluble polymeric carriers to late endocytic intracellular compartments. Three polymeric carriers of different molecular weight and character were studied: dextrin (Mw~50,000 g/mol), a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer (Mw approximately 35,000 g/mol) and polyethylene glycol (PEG) (Mw 5000 g/mol). They were labelled with Oregon Green (OG) (0.3-3 wt.%; <3% free OG in respect of total). A panel of relevant target cells were used: THP-1, ARPE-19, and MCF-7 cells, and primary bovine chondrocytes (currently being used to evaluate novel polymer therapeutics) as well as NRK and Vero cells as reference controls. Specific intracellular compartments were marked using either endocytosed physiological standards, Marine Blue (MB) or Texas-red (TxR)-Wheat germ agglutinin (WGA), TxR-Bovine Serum Albumin (BSA), TxR-dextran, ricin holotoxin, C6-7-nitro-2,1,3-benzoxadiazol-4-yl (NBD)-labelled ceramide and TxR-shiga toxin B chain, or post-fixation immuno-staining for early endosomal antigen 1 (EEA1), lysosomal-associated membrane proteins (LAMP-1, Lgp-120 or CD63) or the Golgi marker GM130. Co-localisation with polymer-OG conjugates confirmed transfer to discreet, late endocytic (including lysosomal) compartments in all cells types. The technique described here is a particularly powerful tool as it circumvents fixation artefacts ensuring the retention of water-soluble polymers within the vesicles they occupy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: This paper describes the chemistry and properties of polyacid-modified composite resins ("compomers") designed for use in clinical dentistry, and reviews the literature in this area. METHODS: Information has been obtained from over 50 published articles appearing in the dental and biomaterials literature, with studies being principally identified through MedLine. RESULTS: Published work shows that polyacid-modified composite resins constitute a discrete class of polymeric repair material for use in dentistry. Their distinction is that they contain hydrophilic components, and these cause water to be drawn into the material following cure. This triggers an acid-base reaction, and gives the materials certain clinically-desirable properties (fluoride release, buffering capability) that are also associated with glass-ionomer cements. The water uptake leads to a decline in certain, though not all, physical properties. However, clinical studies have shown these materials to perform acceptably in a variety of applications (Class I, Class II and Class V cavities, as fissure sealants and as orthodontic band cements), especially in children's teeth. CONCLUSIONS/SIGNIFICANCE: Polyacid-modified composite resins constitute a versatile class of dental repair material, whose bioactivity confers clinical advantages, and which are particularly useful in children's dentistry.