1 resultado para native chemical ligation

em Duke University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have harnessed two reactions catalyzed by the enzyme sortase A and applied them to generate new methods for the purification and site-selective modification of recombinant protein therapeutics.

We utilized native peptide ligation —a well-known function of sortase A— to attach a small molecule drug specifically to the carboxy-terminus of a recombinant protein. By combining this reaction with the unique phase behavior of elastin-like polypeptides, we developed a protocol that produces homogenously-labeled protein-small molecule conjugates using only centrifugation. The same reaction can be used to produce unmodified therapeutic proteins simply by substituting a single reactant. The isolated proteins or protein-small molecule conjugates do not have any exogenous purification tags, eliminating the potential influence of these tags on bioactivity. Because both unmodified and modified proteins are produced by a general process that is the same for any protein of interest and does not require any chromatography, the time, effort, and cost associated with protein purification and modification is greatly reduced.

We also developed an innovative and unique method that attaches a tunable number of drug molecules to any recombinant protein of interest in a site-specific manner. Although the ability of sortase A to carry out native peptide ligation is widely used, we demonstrated that Sortase A is also capable of attaching small molecules to proteins through an isopeptide bond at lysine side chains within a unique amino acid sequence. This reaction —isopeptide ligation— is a new site-specific conjugation method that is orthogonal to all available protein-small conjugation technologies and is the first site-specific conjugation method that attaches the payload to lysine residues. We show that isopeptide ligation can be applied broadly to peptides, proteins, and antibodies using a variety of small molecule cargoes to efficiently generate stable conjugates. We thoroughly assessed the site-selectivity of this reaction using a variety of analytical methods and showed that in many cases the reaction is site-specific for lysines in flexible, disordered regions of the substrate proteins. Finally, we showed that isopeptide ligation can be used to create clinically-relevant antibody-drug conjugates that have potent cytotoxicity towards cancerous cells